

User’s Guide for TOUGH2-MP -

A Massively Parallel Version of the TOUGH2 Code

Keni Zhang, Yu-Shu Wu, and Karsten Pruess

Earth Sciences Division

Lawrence Berkeley National Laboratory

May 2008

 2

 3

ABSTRACT

TOUGH2-MP is a massively parallel (MP) version of the TOUGH2 code, designed for

computationally efficient parallel simulation of isothermal and nonisothermal flows of

multicomponent, multiphase fluids in one, two, and three-dimensional porous and

fractured media. In recent years, computational requirements have become increasingly

intensive in large or highly nonlinear problems for applications in areas such as

radioactive waste disposal, CO2 geological sequestration, environmental assessment and

remediation, reservoir engineering, and groundwater hydrology. The primary objective of

developing the parallel-simulation capability is to significantly improve the

computational performance of the TOUGH2 family of codes. The particular goal for the

parallel simulator is to achieve orders-of-magnitude improvement in computational time

for models with ever-increasing complexity.

TOUGH2-MP is designed to perform parallel simulation on multi-CPU computational

platforms. An earlier version of TOUGH2-MP (V1.0) was based on the TOUGH2

Version 1.4 with EOS3, EOS9, and T2R3D modules, a software previously qualified for

applications in the Yucca Mountain project, and was designed for execution on CRAY

T3E and IBM SP supercomputers. The current version of TOUGH2-MP (V2.0) includes

all fluid property modules of the standard version TOUGH2 V2.0. It provides

computationally efficient capabilities using supercomputers, Linux clusters, or multi-core

PCs, and also offers many user-friendly features. The parallel simulator inherits all

process capabilities from V2.0 together with additional capabilities for handling fractured

media from V1.4.

This report provides a quick starting guide on how to set up and run the TOUGH2-MP

program for users with a basic knowledge of running the (standard) version TOUGH2

code, The report also gives a brief technical description of the code, including a

discussion of parallel methodology, code structure, as well as mathematical and

numerical methods used. To familiarize users with the parallel code, illustrative sample

problems are presented.

 4

 5

TABLE OF CONTENTS

ABSTRACT

1. INTRODUCTION .. 7
2. REQUIREMENTS AND CODE INSTALLATION.. 10

2.1 Hardware and Software Requirements ... 10
2.2 Code Compilation and Installation ... 11

3. METHODOLOGY AND CODE ARCHITECTURE .. 15
3.1 Grid Domain Partitioning and Gridblock Reordering .. 16
3.2 Organization of Input and Output Data .. 19
3.3 Assembly and Solution of Linearized Equation Systems 20
3.4 Communication between Processors .. 22
3.5 Updating Thermophysical Properties ... 22
3.6 Program Structure and Flow Chart ... 23

4. DESCRIPTION OF INPUT FILES .. 26
4.1 Preparation of Input Data.. 26
4.2 Input File Format .. 26
4.3 Input Formats for MESHMAKER.. 51

4.3.1 Generation of Radially Symmetric Grids .. 52
4.3.2 Generation of Rectilinear Grids ... 55
4.3.3 MINC Processing for Fractured Media.. 56

4.4 Special Input Requirements for TOUGH2-MP .. 58
4.5 Output from TOUGH2-MP... 68

5. USER FEATURES ... 73
6. SAMPLE PROBLEMS... 74

6.1 Unsaturated Flow Simulation ... 75
6.2 Contaminant Transport Simulation... 76
6.3 Investigation of CO2 Convection Mixing ... 78
6.4 Large-scale two-phase water and hydrogen flow simulation 81

7. CONCLUDING REMARKS.. 90
ACKNOWLEDGES ... 91
REFERENCES ... 93
APPENDIX A. RUNNING TOUGH2-MP ON MULTIPLE-CORE PCs 98
APPENDIX B. RELATIVE PERMEABILITY FUNCTIONS...................................... 100
APPENDIX C. CAPILLARY PRESSURE FUNCTIONS .. 105

 6

 7

1. INTRODUCTION

TOUGH2 (Pruess, 1987; Pruess, 1991; Pruess et al., 1999) is a general-purpose

numerical simulation program for multi-dimensional, multiphase, multicomponent fluid

flows, heat transfer and contaminant transport in porous and fractured media. It has been

used worldwide for geothermal reservoir engineering, nuclear waste isolation,

environmental assessment and remediation, and modeling flow and transport in variably

saturated media. The TOUGH2-MP code, a massive parallel version of the TOUGH2

code, was originally developed on CRAY T3E and IBM SP supercomputers (Elmroth et

al., 2001; Zhang et al. 2001; Wu et al., 2002, Zhang, 2003). Since then, the parallel code

has been improved in many ways by optimizing memory use, improving communication

schemes, and including more fluid property modules (Zhang et al. 2003, 2006). Since its

development, the parallel code has been successfully applied to large-scale simulations

with up to several million gridblocks (e.g., Zhang et al., 2003a, Zhang et al. 2004,

Yamamoto et al., 2007, Senger et al., 2008).

The original TOUGH2 code, an enhanced version of the TOUGH code (Pruess, 1987),

was first released in 1991 (Pruess, 1991) with five basic EOS modules. The enhanced

version 2.0 of the TOUGH2 code was made available to the public in 1999 and included

additional fluid property modules (Pruess et al., 1999). The parallel version TOUGH2-

MP V1.0 (Zhang, 2003) was developed based on the original TOUGH2 V1.4 simulator

(Wu et al., 1999; Wu, 1999), i.e., by implementing parallel computing algorithms into the

V1.4 code. In early efforts at developing parallel simulation capabilities, Elmroth et al.

(2001) developed a parallel prototype scheme for the TOUGH2 code for Massively

Parallel Processor (MPP) computers. Zhang et al. (2001 and 2003) made further

improvements in distributing memory requirements and improving computational

efficiency for solving extremely large reservoir simulation problems with millions of

gridblocks.

As compared with the previous version of the parallel code, the current version of

TOUGH2-MP Version 2.0, has been significantly improved in the efficiency of its

 8

communication schemes. The improvements in the new version are achieved through

reductions in the number of small-size messages and in the size of large messages. To

achieve a faster nonlinear iteration converging speed, at each Newton iteration

information exchanges across sub-domain boundaries are limited to primary variables

only, while all secondary variables are updated locally, using primary variables for the

sub-domain. Furthermore, the message-exchange speed is enhanced by using non-

blocking communications during both linear and nonlinear iterations. We have also

modified the AZTEC parallel linear-equation solver (Tuminaro et al., 1999) to non-

blocking communication. All these improvements result in the current version of

TOUGH2-MP being faster and more scalable than its predecessor.

In performing a parallel simulation, the TOUGH2-MP code first subdivides a simulation

domain, defined by an unstructured grid of a TOUGH2 mesh, into a number of sub-

domains using the partitioning algorithm from the METIS software package (Karypsis

and Kumar, 1998). The parallel code then relies on the MPI (Message-Passing Interface;

Message Passing Forum, 1994) for its parallel implementation. Parallel simulations are

run as multiple processes on a few or many processors simultaneously. Each

process/processor is in charge of one portion of the simulation domain for updating

thermophysical properties, assembling mass and energy balance equations, solving liner

equation systems, and performing other local computations. The local linear equation

systems are solved in parallel by multiple processors with the Aztec linear solver package.

Although each processor solves the linearized equations of subdomains independently,

the entire linear equation system is solved together by all processors collaboratively via

communication between neighboring processors during each Newton iteration step.

Although TOUGH2-MP V2.0 was designed for parallel computing using multiple

processors, the code can provide significant gains in computational efficiency even for

single processor machines by executing nominally parallel processes in sequential mode.

When multiple processors are available, it may be advantageous to partition a simulation

domain into more subdomains than available processors, making the program execution

partially sequential. This somewhat surprising finding can be explained from the behavior

 9

of the linear equation solution in the subdomains, which for large problems consumes

most of the numerical work in a simulation. By partitioning into a larger number of

subdomains, we obtain a larger number of smaller linear algebra problems, which can be

solved more efficiently than a smaller number of larger problems. However, with

increasing number of processes there also is increased overhead from message passing,

which leads to optimal performance for some "intermediate" level of domain partitioning.

Another advantage of running parallel processes partially sequentially is that memory

requirements may be reduced, so that larger problems with more grid blocks can be

tackled.

The numerical scheme of the TOUGH2 code is based on the integral finite-difference

(IFD) method (Narasimhan and Witherspoon, 1976; Pruess, 1987, 1991). In the

TOUGH2 formulation, conservation equations, involving mass of air, water and chemical

components as well as thermal energy, are discretized in space using the IFD method.

Time is discretized fully implicitly using a first-order backward finite difference scheme.

The resulting discrete finite-difference equations for mass and energy balances are

nonlinear and solved simultaneously using the Newton/Raphson iterative scheme. All

these numerical schemes are adopted by TOUGH2-MP. The parallel code also inherits all

the process capabilities of the TOUGH2 code, including descriptions of the

thermodynamics and thermophysical properties of the multiphase flow system. In

addition, FORTRAN 90 features are introduced to TOUGH2-MP, such as dynamic

memory allocation, array operation, matrix manipulation, and replacing “common

blocks” (used in the original TOUGH2) with modules. All new subroutines are written in

FORTRAN 90. Program units imported from the original TOUGH2 remain in

FORTRAN 77, except for the use of data modules. The current version of TOUGH2-MP

includes following modules: EOS1, EOS2, EOS3, EOS4, EOS5, EOS7, EOS7R, EOS8,

EOS9, ECO2N, EWASG, and T2R3D. Other members of the TOUGH family including

TMVOC and TOUGH+HYDRATE (Zhang et al., 2008) have also been parallelized.

The parallelization of TOUGH2 improves modeling capabilities significantly in terms of

problem size and simulation time. The code demonstrates excellent scalability. Test

 10

examples show that a linear or super-linear speedup can be obtained on typical Linux

clusters as well as on supercomputers. Because the TOUGH2-MP parallel simulator was

developed from an existing mature code, it inherits not only simulation functions from

the original code, but also all other features, including input/output format, error handling,

and improvements for code stability. These features provide robustness of the parallel

code and ease of use for the user community of the original code, using identical input

data, mesh and output files. Moreover, the domain decomposition approach and parallel

computation enhance model simulation capabilities in terms of problem size and

complexity to a level that cannot be reached by single-CPU codes. By using the parallel

simulator, multi-million gridblock problems can be run on a typical Linux cluster with

several tens to hundreds of processors to achieve ten to hundred times improvement in

computational time or problem size. Our tests indicate that the parallel simulator allows

much larger problems to be solved by multiple-process simulation even with a single-

processor computer. This surprising result can be understood in terms of efficiency gains

from decomposing one large linear algebra problem into a series of smaller ones, which

produces super-linear speedup. The growing availability of multi-core CPUs will make

parallel processing on PCs far more attractive.

This report provides a quick reference guide for utilizing the TOUGH2-MP code. The

users are supposed to have basic knowledge of the original TOUGH2 family of codes. In

particular, this report together with the TOUGH2 V2.0 User’s Guide provides sufficient

information for users to apply TOUGH2-MP to subsurface flow simulation problems. A

detailed technical description of the physical processes modeled, and the mathematical

and numerical methods used in the code can be found in the user’s guide for TOUGH2

Version 2.0 (Pruess et al., 1999).

2. REQUIREMENTS AND CODE INSTALLATION

2.1 Hardware and Software Requirements

TOUGH2-MP has been tested on IBM and CRAY supercomputers, Linux clusters, Macs,

and multi-core PCs under different operating systems. It has been successfully compiled

 11

using g95, and Fortran compilers from Intel, IBM, and the Portland Group. The code

requires 64-bit arithmetic (8 byte word length for floating point numbers) for successful

execution. TOUGH2-MP can be run on any shared- or distributed-memory multiple CPU

computer system on which MPI is installed. The code has been run on LAM/MPI, OPEN

MPI, and MPICH2.

The total computer memory required by TOUGH2-MP depends on the problem size. For

a given problem, memory requirement is split among the processors used for the

simulation. The code automatically distributes memory requirements to all processors

based on the partitioning of the domain. All major arrays are dynamically allocated

according to the numbers of local gridblocks and connections assigned by domain

partitioning to each processor. As a result, larger problems can be solved using more

processors on a distributed memory computer system. For example, by far the largest

array used in TOUGH2-MP is “PAR”, the array for storage of secondary variables. Its

size in bytes (using 8-byte real data) is

 M=(NPH*(NB+NK)+2)*(NEQ+1)*NEL*8 (2.1)

Here the parameters are the total number of fluid phases NPH, secondary parameter

number NB, component number NK, and gridblock number NEL. If NPH=3, NB=8,

NK=3, NEQ=4, NEL=10
6, the total memory requirement for this array is about 1400 MB.

If 64 processors are used to solve this problem, each processor requires about 22 MB of

memory for this array. One of the critical bottlenecks of memory requirement is during

the reading of the MESH file through the master processor. This bottleneck is avoided by

a reading-distributing strategy that replaces the original MESH with two files. Detailed

discussion of this approach is provided in Section 4.4.

2.2 Code Compilation and Installation

The source code of TOUGH2-MP consists of 10 FORTRAN files: Compu_Eos.f,

Data_DD.f , Input_Output.f , Main_Comp.f , Mem_Alloc.f, Mesh_Maker.f, MULTI.f,

Paral_Subs.f, TOUGH2.f, Utility_F.f , as listed in Table 2-1. Two library files

 12

libmetis.a and libaztec.a are also needed for compiling the parallel program. The two

library files are generated by compiling the METIS and AZTEC software packages.

Different EOS modules need different “Compu_Eos.f” files. Compilation of each module

should use its own “Compu_Eos.f” file. In addition, the EOS9 and T2R3D modules

require their own special “MULTI.f” file.

Table 2-1 List of program files of the TOUGH2-MP source code

File name Functions Note

Main_Comp.f Main program for time stepping and

parallel running control.

Required

Data_DD.f Data declaration and distribution Required

Input_Output.f Input and output Required

Compu_Eos.f EOS Modules and satellite functions Required

Mem_Alloc.f Memery allocation Required

Mesh_Maker.f Meshmaker Optional

MULTI.f Jacobian assembly Required

Para_Subs.f Parallelization related subroutines Required

TOUGH2.f Program entrance Required

Utility_F.f Utility subroutines Required

libmetis.a Compiled METIS functions Library file

libaztec.a Compile AZTEC functions Library file

Compilation and installation can be done through the following steps:

1. Download METIS at:

http://www-users.cs.umn.edu/~karypis/metis/metis/download.html

2. Compile METIS in the computer system where TOUGH2-MP will be installed.

3. Download AZTEC at:

http://www.cs.sandia.gov/CRF/aztec1.html

4. Compile AZTEC in the computer system where TOUGH2-MP will be installed.

(Guides for compiling METIS and AZTEC are provided with the downloaded

packages.)

 13

5. Transfer the file “tough2-mp_2.0.tar.gz” from the installation CD-ROM to your

working directory.

6. Use gunzip to unzip the file and then use the tar command to untar the archived files

and directories as follows:

gunzip tough2-mp_2.0.tar.gz

tar –xvf tough2-mp_2.0.tar

A directory named tough2-mp will be created under the current working directory.

Source files, make scripts, and installation test input files will be located in the

subdirectories. Two additional subdirectories are created under the directory tough2-

mp: ~/tough2-mp/partition/ and ~/tough2-mp/utilities/.

7. Copy az_aztecf.h and libaztec.a from ~/aztec/lib and libmetis.a from ~/metis-4.0 to

the subdirectory where source code is located (e.g. ~/tough2-mp/eos3/). libaztec.a and

libmetis.a were created by successfully compiling Metis and Aztec in steps 2 and 4,

respectively.

8. The “makefile” for three different compilers are provided: IBM, INTEL and

PORTLAND GROUP. You can choose the one most close to your compiler. In the

“makefile”, a wrapper compiler, mpif90, was specified for compiling the source

codes. The user may need to change the compiler name to the one installed in the

computer system by editing the file “makefile” at the line containing “FC=mpif90”.

The user may also need to specify the path for MPI “include” and “library” files.

Figure 2-1 shows a “makefile” for creating a TOUGH2-MP/EOS3 executable using

PORTLAND GROUP Fortran 90.

9. Type “make” under the ~/tough2-mp/eos3/ subdirectory to compile the code. The

executable file “t2eos3-mp” will be created. After compilation, type “make clean” to

clean all intermediate files.

10. In order to successfully build TOUGH2-MP, the c and FORTRAN compilers used for

compiling the MPI system, AZTEC, METIS and TOUGH2-MP source codes must be

compatible. A Fortran 90 or higher version must be used for FORTRAN source code

compilation.

 14

Figure 2-1. A makefile for TOUGH2-MP compilation

If “invalid communicator” or other communication problems are encountered during

running the executable, user may try following:

1. Copy ~/tough2-mp/utilities/md_wrap_mpi_c.c to ~/aztec/lib to replace the original

one.

2. Recompile AZTEC and then use the new library libaztec.a to recompile the

TOUGH2-MP executable.

If you have difficulty using the linear solver “AZ_gmres”, you may try the following:

1. Copy ~/tough2-mp/utilities/la_dlaic1.f to ~/aztec/lib to replace the original one.

2. Recompile AZTEC and then use the new library libaztec.a to recompile the

TOUGH2-MP executable.

One may get additional speedup by using non-blocking communication version AZTEC

by performing the following steps:

1. Copy ~/tough2-mp/utilities/az_comm.c and ~/tough2-mp/utilities/az_matvec_mult.c

to ~/aztec/lib to replace the original files.

2. Recompile AZTEC and then use the new library libaztec.a to recompile the

TOUGH2-MP executable.

for clusters
FC = mpif90
FFLAGS = -O -r8 -i4

The following specifies the files used for the "standard
version"
OBJS = Data_DD.o Mem_Alloc.o MULTI.o Main_Comp.o TOUGH2.o \
 Compu_Eos.o Input_Output.o Mesh_Maker.o \
 Paral_Subs.o Utility_F.o \

LIBS = libmetis.a libaztec.a
tough2: $(OBJS)
 $(FC) -o t3eos3-mp $(FFLAGS) $(OBJS) $(LIBS)
clean:
rm -f *.o *.mod

 15

The library file “libmetis.a” contains subroutines of the METIS package for partitioning

irregular graphs and meshes. For reducing the requirement of computer memory, we use

4-byte integer for all large integer arrays in TOUGH2-MP. The corresponding arrays in

METIS must also be a 4-byte integer. This can be implemented by simply removing the

line of “#define IDXTYPE_INT” in head file “struct.h” of the METIS source code. The

library file “libaztec.a” provides subroutines for solving linear equation systems in

parallel.

3. METHODOLOGY AND CODE ARCHITECTURE

Domain decomposition methods (DDM) are used as a divide and conquer strategy for

solving large or time-consuming problems. The idea behind this approach is to divide the

computational domain into a series of subdomains. Through the local solutions on the

subdomains, a global solution is formed. Solutions for subdomains can be sought

simultaneously. Therefore this approach is suitable for parallel computations as long as

the computational work can be evenly distributed. The TOUGH2-MP numerical

computational scheme is based on a fully implicit formulation with Newton iteration. The

resulting linearized equations are solved by a parallel linear solver from the AZTEC

package (Tuminaro et al., 1999). AZTEC includes a number of Krylov iterative methods,

such as conjugate gradient (CG), generalized minimum residual (GMRES) and stabilized

biconjugate gradient (BiCGSTAB). Fully implicit scheme has been proven to be the most

robust numerical approach in modeling multiphase flow and heat transfer in reservoirs

over the past several decades. For a typical simulation with the fully implicit scheme and

Newton iteration, such as in the TOUGH2 run, the most time-consuming steps of the

execution consist of three parts: (1) updating thermophysical parameters, (2) assembling

the Jacobian matrix, and (3) solving the linearized system of equations. Consequently,

one of the most important aims of a parallel simulation is to distribute computational time

for these three parts. In addition, a parallel scheme must take into account domain

decomposition, grid node/element reordering, data input and output optimizing, and

efficient message exchange between processors. These important parallel-computing

strategies and implementation procedures are discussed below.

 16

3.1 Grid Domain Partitioning and Gridblock Reordering

Developing an efficient and effective method for partitioning unstructured grid domains

is a critical step for a successful parallel-computing scheme. Firstly, to achieve better

numerical performance, parallel simulations require the distribution of gridblocks evenly

to different processing elements (PEs) or processors, i.e., the number of gridblocks

assigned to each PE should be roughly the same. Secondly, the number of connections

across domain bounds is minimized. The goal of the first requirement is to balance

computational work among the processors. The goal of the second requirement is to

minimize the time consumed in communication between processors (resulting from the

estimation of the coupling terms or connections across the domain bounds by different

processors).

In a TOUGH2-MP simulation, a model domain, or grid, is represented by a set of one-,

two- or three-dimensional gridblocks (elements), and the interfaces between any two

gridblocks are represented by connections. The entire grid system is treated as an

unstructured grid. From the connection information, an adjacency matrix can be

constructed. The adjacency or connection structure of the model meshes is stored in a

compressed storage format (CSR).

The adjacency structure of storing the model grid can be described as follows: In the CSR

format, the adjacency structure of a global-mesh domain with n gridblocks and m

connections is represented by two arrays, xadj and adj. The xadj array has a size of n+1,

whereas the adj array has a size of 2m. Assuming that element numbering starts from 1,

the adjacency list of element i is stored in an array adj, starting at index xadj(i) and

ending at index xadj(i+1)-1. That is, for each element i, its adjacency list is stored in the

consecutive locations in the array adj, and the array xadj is used to point to where it

begins and where it ends. Figure 3-1a shows the connection of a 12-element domain;

Figure 3-1b illustrates its corresponding CSR-format arrays.

We utilize one of the three partitioning algorithms provided by the METIS software

package (version 4.0) (Karypsis and Kumar, 1998) for the grid domain partitioning. The

 17

three algorithms are denoted, respectively, as the K-way, the VK-way, and the Recursive

partitioning algorithm. K-way is used for partitioning a global mesh (graph) into a large

number of partitions (more than 8). The objective of this algorithm is to minimize the

number of edges that straddle different partitions. If a small number of partitions is

desired, the Recursive partitioning method, a recursive bisection algorithm, should be

used. VK-way is a modification to K-way and its objective is to minimize the total

communication volume. Both K-way and VK-way belong to multilevel partitioning

algorithms.

Figure 3-1a shows a scheme for partitioning a sample domain into three parts. Gridblocks

are assigned to different processors through partitioning methods and reordered by each

processor to a local index ordering. Elements corresponding to these blocks are explicitly

stored in the processor and are defined by a set of indices referred to as the processor’s

update set. The update set is further divided into two subsets: internal and border.

Elements of the internal set are updated using only the information on the current

processor. The border set consists of blocks with at least one edge to a block assigned to

another processor. The border set includes blocks that would require values from the

other processors to be updated. The set of blocks that are not in the current processor, but

needed to update the components in the border set, is referred to as an external set. Table

3-1 shows the partitioning results. One of the local numbering schemes for the sample

problem is presented in Figure 3-1a.

The local numbering of gridblocks is carried out to facilitate the communication between

processors. The numbering sequence is internal block set followed by border block set

and finally by the external block set. In addition, all external blocks on the same

processor are in a consecutive order.

 18

Figure 3-1 An example of domain partitioning and CSR format for storing

connections

Table 3-1. Example of Domain Partitioning and Local Numbering

Update External

Internal Border

Gridblocks 1 2 3 4 5 7 10 Processor 0

Local Numbering 1 2 3 4 5 6 7

Gridblocks 8 9 7 10 2 3 11 Processor 1

Local Numbering 1 2 3 4 5 6 7

Gridblocks 6 12 5 11 4 10 Processor 2

Local Numbering 1 2 3 4 5 6

1

2 3

4 5

6

7

8
9

10 11

12

(a) A 12-elements domain partitioning on 3 processors

(b) CSR format

Processor 0

Processor 2

Processor 1

Elements 1 2 3 4 5 6 7 8 9 10 11 12

xadj 1 2 5 8 10 12 14 16 18 20 23 26 27

adj 2 1,3,7 2,4,10 3,5 4,6 5,11 2,8 7,9 8,10 3,9,11 6,10,12 11

 19

Only nonzero entries of a submatrix for a partitioned mesh domain are stored on each

processor. Each processor stores only the rows that correspond to its update set

(including internal and border blocks, See Table 3-1). These rows form a submatrix

whose entries correspond to the variables of both the update set and the external set

defined on this processor.

3.2 Organization of Input and Output Data

The input data of TOUGH2-MP include hydrogeologic parameters and constitutive

relations of porous media and fluids, such as absolute and relative permeability, porosity,

capillary pressure, thermophysical properties of fluids and rock, and initial and boundary

conditions of the system. Other processing requirements include the specification of

space-discretized geometric information (grid) and various program options

(computational parameters and time-stepping information). For a large-scale, three-

dimensional model, a computer memory of several gigabytes is generally required and

the distribution of the memory to all processors is necessary for practical application of

TOUGH2-MP.

To efficiently use the memory of each processor (considering that each processor has a

limited memory available), the input data files for the TOUGH2-MP simulation are

organized in sequential format. There are two large groups of data blocks within a

TOUGH2-MP mesh file: one with dimensions equal to the number of gridblocks; the

other with dimensions equal to the number of connections (interfaces). Large data blocks

are read one by one through a temporary full-sized array and then distributed to different

processors. This method avoids storing all input data in a single processor (whose

memory space may be too small) and greatly enhances the I/O efficiency. Other small-

volume data, such as simulation control parameters, are duplicated onto all processors.

All data input and output are carried out through the master processor. For extremely

large-scale problems, outputs may be performed by all processors involved in the

computation with multiple files by each processor writing out its own portion simulation

results. This approach may avoid extensive communication for output. Time series

 20

outputs are written out by processors at which the specified elements or connections for

output are located. This approach could be extremely efficient for high latency computer

systems.

3.3 Assembly and Solution of Linearized Equation Systems

In the TOUGH2-MP formulation, the discretization in space using the IFD leads to a set

of strongly coupled nonlinear algebraic equations, which are linearized by the Newton

method. Within each Newton iteration step, the Jacobian matrix is first constructed by

numerical differentiation. The resulting system of linear equations is then solved using an

iterative linear solver with different preconditioning procedures. The following gives a

brief discussion of assembling and solving the linearized equation systems with parallel

simulation.

The discrete mass and energy balance equations solved by the TOUGH2 code can be

written in a residual form (Pruess, 1991; Pruess et al., 1999):

0})({)()()(1,111 =+∆−−= ++++ ∑ t

nn

t

nm

m

nm

n

t

n

t

n

t

n qVxFA
V

t
xMxMxR

κκκκκ (3.1)

where the vector x
t consists of primary variables at time t, κ

nR is the residual of

component κ (heat is regarded as a “component”) for block n, M denotes mass or thermal

energy per unit volume for component κ , Vn is the volume of the block n, and q denotes

sinks and sources of mass or energy, t∆ denotes the current time step size, t+1 denotes

the current time, Anm is the interface area between blocks n and m, and Fnm is the “flow”

term of mass or energy exchange between blocks n and m.

Equation (3.1) is solved using the Newton method, leading to

)()(,

1,

,1,

1,

pi

t

npipi

pi i

t

n xRxx
x

R +
+

+

=−
∂

∂
−∑ κ

κ

 (3.2)

 21

where xi,p represents the value of ith primary variable at the pth
 iteration step.

The Jacobian matrix as well as the right-hand side of (3.2) needs to be recalculated at

each Newton iteration, such that computational efforts may be extensive for a large

simulation. In the parallel code, the assembly of the linear equation system (3.2) is shared

by all processors, and each processor is responsible for computing the rows of the

Jacobian matrix that correspond specifically to the blocks in the processor’s own update

set. Computation of the elements in the Jacobian matrix is performed in two parts. The

first part consists of the computations related to the individual blocks (accumulation and

source/sink terms). Such calculations are carried out using the information stored on the

current processor, without need of communication with other processors. The second part

includes all the computations related to the connections or flow terms. Elements in the

border set need information from the external set, which requires communication with

neighboring processors. Before performing these computations, an exchange of relevant

primary and updating secondary variables are required. For the elements corresponding to

border set blocks, each processor sends these elements to the different but related

processors, which receive these elements as external blocks.

The Jacobian matrix for local gridblocks in each processor is stored in the distributed

variable block row (DVBR) format, a generalization of the VBR format. All matrix

blocks are stored row-wise, with the diagonal blocks stored first in each block row. Scalar

elements of each matrix block are stored in column major order. The data structure

consists of a real-type vector and five integer-type vectors, forming the Jacobian matrix.

Detailed explanation of the DVBR data format can be found in Tuminaro et al. (1999).

The linearized equation system arising at each Newton step is solved using an iterative

linear solver from the AZTEC package. There are several different solvers and

preconditioners from the package for users to select and the options include conjugate

gradient, restarted generalized minimal residual, conjugate gradient squared, transposed-

free quasi-minimal residual, and bi-conjugate gradient with stabilization methods. The

work for solving the global linearized equation is shared by all processors, with each

 22

processor responsible for computing its own portion of the partitioned domain equations.

To accomplish the parallel solution, communication between a pair of processors is

required to exchange data between the neighboring grid partitions. Moreover, global

communication is also required to compute the norms of vectors for checking the

convergence.

During a parallel simulation, the time-step size is automatically adjusted (increased or

reduced), depending on the convergence rate of iterations. In the TOUGH2-MP code,

time-step size is calculated at the first processor (master processor, named PE0) after

collecting necessary data from all processors. The convergence rates may be different in

different processors. Only when all processors reach stopping criteria will the time march

to the next time step.

3.4 Communication between Processors

Communication between processors working on neighboring/connected gridblocks,

partitioned into different domains, is an essential component of the parallel algorithm.

Moreover, global communication is also required to compute norms of vectors,

contributed by all processors, for checking the convergence. In addition to the

communication taking place inside the linear solver routine to solve the linear equation

system, communication between neighboring processors is necessary to update primary

variables. A subroutine is used to manage data exchange between processors. When the

subroutine is called by a processor, an exchange of vector elements corresponding to the

external set of the gridblocks is performed. During time stepping or Newton iteration,

exchange of external variables is required for the vectors containing the primary variables.

More discussion on the prototype scheme used for data exchange is given in Elmroth et al.

(2001). In addition, we have further improved the schemes by introducing non-blocking

communication to the Aztec package and Newton iterations (Zhang and Wu, 2006)

3.5 Updating Thermophysical Properties

The thermophysical properties of fluid mixtures (secondary variables) needed for

assembling the governing mass- and energy-balance equations are calculated at the end of

 23

each Newton iteration step based on the updated set of primary parameters. In the same

time, the phase conditions are identified for all gridblocks, the appearance or

disappearance of phase is recognized, and primary variables are switched and properly

re-initialized in response to a change of phase. All these tasks must be done gridblock by

gridblock for the entire simulation domain. The computational work for these tasks is

readily parallelized by each processor handling its corresponding subdomain. A tiny

overlapping of computation is needed for the gridblocks at the neighboring subdomain

border to avoid communication for secondary variables.

3.6 Program Structure and Flow Chart

TOUGH2-MP has a program structure very similar to the original version of TOUGH2,

except that the parallel version solves a problem using multiple processors. We

implement dynamic memory allocation, modules, array operations, matrix manipulation,

and other FORTRAN 90 features in the parallel code. In particular, the message-passing

interface (MPI) library of Message Passing Forum (1994) is used for message passing.

Another important modification to the original code is in the time-step looping subroutine.

This subroutine now provides the general control of problem initialization, grid

partitioning, data distribution, memory requirement balancing among all processors, time

stepping, and output options.

In summary, all data input and output are carried out through the master processor. The

most time-consuming computations (assembling the Jacobian matrix, updating

thermophysical parameters, solving linear equation systems.) are distributed to all

processors involved. The memory requirements are also distributed to all processors.

Distributing both computing and memory requirements is essential for solving large-scale

problems and obtaining better parallel performance. Figure 3-2 gives an abbreviated

overview of the program flow chart.

 24

Figure 3-2. Simplified flow chart of TOUGH2-MP

All PEs: Declare variables and arrays, but do not allocate array space

Start

PE0: Read input data, not include property

 data for each block and connection

PE0: Broadcast parameters to all PEs PE1-PEn: Receive parameters from PE0

PE0: Grid partitioning

PE0: Set up global DVBR format matrix

PE0: Distribute DVBR matrix to all PEs

All PEs: Allocate memory spaces for all arrays for storing the properties of

 blocks and connections in each PE

PE1-PEn: Receive local part DVBR format

 matrix from PE0

PE0: Read data of block and connection

 properties and distribute the data
PE1-PEn: Receive the part of data which

 belongs to current PE

All PEs: Exchange external set of data

All PEs: set up local equation system at each PE

All PEs: Solve the equations using Newton’s method

All PEs: Update thermophysical parameters

Converged?

Next time step?

All PEs: Reduce solutions to PE0

PE0: Output results
End

yes

no

no

yes

 25

 Table 4-1. TOUGH2-MP input data blocks§

Keyword Function

TITLE
(first record)

One data record (single line) with a title for the simulation problem

VER14 Optional; invoke using the Version 1.4 processing features.

MESHM Optional; parameters for internal grid generation through MESHMaker

ROCKS Hydrogeologic parameters for various reservoir domains

MULTI Optional; specifies number of fluid components and balance equations
per gridblock; applicable only for certain fluid property (EOS) modules

START Optional; one data record for more flexible initialization

PARAM Computational parameters.

RPCAP Optional; parameters for relative permeability and capillary pressure
functions

TIMES Optional; specification of times for generating printout

*ELEME List of gridblocks (volume elements)

*CONNE List of flow connections between gridblocks

*GENER Optional; list of mass or heat sinks and sources

INDOM Optional; list of initial conditions for specific reservoir domains

*INCON Optional; list of initial conditions for specific gridblocks

NOVER
(optional)

Optional; if present, suppresses printout of version numbers and dates of
the program units executed in a TOUGH2 run

TIMBC Optional; introducing a table for time-dependent pressure boundary.

RTSOL Optional; provide linear solver parameters

FOFT Optional; list of gridblocks for time-dependent output

GOFT Optional; list of source/sink gridblocks for time-dependent output.

COFT Optional; list of connections for time-dependent output

DIFFU Optional; introduce diffusion coefficients

SELEC Optional, provide parameters for requirements by specific modules

ENDCY
(last record)

One record to close the TOUGH2 input file and initiate the simulation

ENDFI Alternative to “ENDCY” for closing a TOUGH2 input file; will cause
flow simulation to be skipped; useful if only mesh generation is desired

§ Blocks labeled with a star * can be provided as separate disk files, in which case

they would be omitted from the INFILE file.

 26

4. DESCRIPTION OF INPUT FILES

4.1 Preparation of Input Data

Input of TOUGH2-MP is provided through a file named INFILE or separate additional

files (e.g. MESH, GENER, INCON), organized into a number of data blocks, labeled by

five-character keywords (Table 4-1). The input file “INFILE” of TOUGH2-MP is

compatible with the input file for TOUGH2 V1.4 and T2R3D V1.4 (Wu, 1999 and 2000),

and also the TOUGH2 V2.0. The parallel program may also receive additional data input

through optional input files (See Section 4.4 for details). In general, input files for V1.4

and 2.0 or combination of both are readily acceptable for the parallel simulator.

4.2 Input File Format

This section presents the data input formats for TOUGH2-MP. Most formats are identical

to corresponding inputs in V1.4 and V2.0. Please refer to the TOUGH2 User’s Guide

Version 2.0 (Pruess et al., 1999, Wu et. al., 1996), and User’s Manual for TOUGH2 V1.4

and T2R3D V1.4 (Wu, 1999 and 2000) for more information.

TITLE is the first record of the input file, containing a header of up to 80

characters, to be printed on the output. This can be used to identify

a problem. If no title is desired, leave this record blank.

VER14 the default version of the parallel code is compatible with

TOUGH2 V2.0. Some modules (EOS3, EOS9, T2R3D) can be run

with both V1.4 or V2.0 (V1.4 has its own specific features). To use

V1.4, this keyword must be presented right after the line for

TITLE keyword.

 MESHM introduces parameters for internal mesh generation and processing.

The MESHMaker input has a modular structure organized by

keywords. Detailed instructions for preparing MESHMaker input

are given in Section 4.3.

 27

 Record MESHM.1

 Format(A5)

 WORD

WORD Enter one of several keywords, such as RZ2D, RZ2DL, XYZ,

MINC, to generate different kinds of computational meshes.

 Record MESHM.2 A blank record closes the MESHM data block.

ENDFI is a keyword that can be used to close a TOUGH2-MP input file

when no flow simulation is desired. This will often be used for a

mesh generation run when some hand-editing of the mesh will be

needed before the actual flow simulation.

 ROCKS introduces material parameters for different reservoir domains.

 Record ROCKS.1

 Format (A5, I5, 7E10.4)

 MAT, NAD, DROK, POR, (PER (I), I = 1,3), CWET, SPHT

 MAT Material name (rock type).

NAD If zero or negative, defaults will take effect for a number of

parameters (see below);

 ≥1: will read another data record to override defaults.

≥2: will read two more records with domain-specific parameters

for relative permeability and capillary pressure functions.

 DROK Rock grain density (kg/m3)

POR Default porosity (void fraction) for all elements belonging to

domain "MAT" for which no other porosity has been specified in

block INCON. Option "START" is necessary for using default

porosity.

PER(I), I = 1,3 absolute permeabilities along the three principal axes, as

specified by ISOT in block CONNE.

 28

 CWET Formation heat conductivity under fully liquid-saturated conditions

 (W/m ˚C).

SPHT Rock grain specific heat (J/kg ˚C). Domains with SPHT > 104 J/kg

˚C will not be included in global material balances. This provision

is useful for boundary nodes, which are given very large volumes

so that their thermo-dynamic state remains constant. Because of

the large volume, inclusion of such nodes in global material

balances would make the balances useless.

 Record ROCKS.1.1 (optional, NAD ≥ 1 only)

 Format (8E10.4)

COM, EXPAN, CDRY, TORTX, GK, PERF(1)/XKD3,

PERF(2)/XKD4, PERF(3)

 COM Pore compressiblity (Pa-1), 1 φ(((()))) ∂φ ∂P(((())))T (default is 0).

 EXPAN Pore expansivity (1/ ˚C), 1 φ(((()))) ∂φ ∂T(((())))
P

 (default is 0).

CDRY Formation heat conductivity under desaturated conditions (W/m

˚C), (default is CWET).

 TORTX Tortuosity factor for binary diffusion.

GK Klinkenberg parameter b (Pa-1) for enhancing gas phase

permeability according to the relationship kgas = kliq * (1 + b/P).

The following three slots are for different parameters in Version 1.4 and 2.0.

For Ver 1.4:

PERF(1) Absolute fracture continuum permeabilities along one principal

axis, as specified by ISOT=1 in block CONNE, for using the ECM

only.

PERF(2) Absolute fracture continuum permeabilities along one principal

axis, as specified by ISOT=2 in block CONNE, for using the ECM

only.

PERF(3) Absolute fracture continuum permeabilities along one principal

axis, as specified by ISOT=3 in block CONNE, for using the ECM

only.

 29

 For a dual-continuum model of dual-permeability, double-porosity

or MINC, PERF(3) is effective porosity of fracture continuum and

in this case, PERF(1) and PERF(2) must be set to zero.

For Ver 2.0:

XKD3 Distribution coefficient for parent radionuclide, Component 3, in

the aqueous phase, m3/kg (EOS7R only).

XKD4 Distribution coefficient for daughter radionuclide, Component 4, in

the aqueous phase, m3/kg (EOS7R only).

 Record ROCKS.1.2 (optional, NAD ≥ 2 only)

 Format (I5, 5X,7E10.4)

 IRP, (RP(I), I= 1,7)

 IRP Integer parameter to choose type of relative permeability function

 (see Appendix B).

 RP(I), I = 1, ..., 7 parameters for relative permeability function (Appendix B).

Record ROCKS.1.3 (optional, NAD ≥ 2 only)

 Format (I5, 5X,7E10.4)

 ICP, (CP(I), I = 1,7)

 ICP Integer parameter to choose type of capillary pressure function

 (see Appendix B).

CP(I) I = 1, ..., 7 parameters for capillary pressure function (Appendix C).

Repeat records 1, 1.1, 1.2, and 1.3 for any number of reservoir

domains.

For T2R3D, an additional rock card is needed for radionuclide transport

properties, which should be located right before the ROCKS.1.2

Record ROCKS.1.1.5 (For T2R3D only)

 FORMAT(6E10.4)

 ALPHAL, ALPHAT, ALAMDA, SKD, DIFFM, ALPHAFM

ALPHAL longitudinal dispersivity (m)

ALPHAT transverse dispersivity (m)

ALAMDA radioactive decay constant = ln(2)/t1/2 (1/s)

 30

SKD distribution coefficient, Kd (m
3/kg)

DIFFM molecular diffusion coefficient in liquid phase (m2/s)

ALPHAFM averaged dispersivity for fracture/matrix (m)

 Record ROCKS.2 A blank record closes the ROCKS data block.

MULTI Permits the user to select the number and nature of balance

equations that will be solved. The keyword MULTI is followed by

a single data record. For most EOS modules this data block is not

needed, as default values are provided internally. Available

parameter choices are different for different EOS modules.

 Record MULTI. l

 Format (5I5)

 NK, NEQ, NPH, NB, NKIN

NK Number of mass components.

NEQ number of balance equations per grid block. Usually we have NEQ

=NK + 1, for solving NK mass and one energy balance equation.

Some EOS modules allow the option NEQ = NK, in which case

only NK mass balances and no energy equation will be solved.

NPH Number of phases that can be present (2 for mostt modules).

NB Number of secondary parameters in the PAR-array (see Fig. 3)

other than component mass fractions. Available options include

NB = 6 (no diffusion) and NB = 8 (include diffusion). It always

equal 8 for Ver 1.4.

NKIN Number of mass components in INCON data (default is NKIN =

NK). This parameter can be used, for example, to initialize an

EOS7R simulation (NK= 4 or 5) from data generated by EOS7

(NK = 2 or 3). If a value other than the default is to be used, then

data block MULTI must appear before any initial conditions in

data blocks PARAM, INDOM, or INCON.

 31

 START (optional)

A record with START typed in columns 1-5 allows a more flexible

initialization. More specifically, when START is present, INCON

data can be in arbitrary order, and need not be present for all

gridblocks (in which case defaults will be used). Without START,

there must be a one-to-one correspondence between the data in

blocks ELEME and INCON.

PARAM introduces computation parameters, time stepping information, and

default initial conditions.

 Record PARAM.1

 Format (2I2, 3I4, 24I1, 10X, 2E10.4, I10).

NOITE, KDATA, MCYC, MSEC, MCYPR, (MOP(I), I = 1, 24),

TEXP, BE, MCYCF, MOP(25)

NOITE Specifies the maximum number of Newtonian iterations per time

step (default is 8)

 KDATA Specifies amount of printout (default is 1).

 = 0 or 1: print a selection of the most important variables.

 = 2: in addition, print mass and heat fluxes and flow velocities.

 = 3: in addition, print primary variables and their changes.

 MCYC Maximum number of time steps to be calculated.

 MSEC Maximum duration, in CPU seconds, of the simulation

 (default is infinite).

MCYPR Printout will occur for every multiple of MCYPR steps (default is

1).

MOP(I), I = 1,24 allows choice of various options, which are documented in

printed output from a TOUGH2 run.

 MOP(1) If unequal 0, a short printout for nonconvergent iterations will be

 generated.

MOP(2) through MOP(6) generate additional printout in various

subroutines, if set unequal 0. This feature should not be needed in

 32

normal applications, but it will be convenient when a user suspects

a bug and wishes to examine the inner workings of the code. The

amount of printout increases with MOP(I) (consult source code

listings for details).

MOP(2) CYCIT (main subroutine).

 MOP(3) MULTI (flow and accumulation terms).

 MOP(4) QU (sinks/sources).

 MOP(5) EOS (equation of state).

 MOP(6) LINEQ (linear equations).

 MOP(7) If unequal 0, a printout of input data will be provided.

 Calculation option choices are as follows:

MOP(9) Determines the composition of produced fluid with the MASS

option (see GENER, below). The relative amounts of phases are

determined as follows:

 = 0: according to relative mobility in the source element.

= 1: produced source fluid has the same phase composition as

the producing element.

MOP(10) Chooses the interpolation formula for heat conductivity of rock as

a function of liquid saturation (Sl)

 = 0: C(Sl) = CDRY + SQRT(Sl* [CWET - CDRY])

 = 1: C(Sl) = CDRY + Sl * (CWET - CDRY)

= 2: C = C0+C1*T+C2*Sl+C3*POR.

 MOP(11) Determines evaluation of mobility and permeability at interfaces.

= 0: mobilities are upstream weighted with WUP (see

PARAM.3), permeability is upstream weighted.

= 1: mobilities are averaged between adjacent elements,

permeability is upstream weighted.

 = 2: mobilities are upstream weighted, permeability is harmonic

 weighted.

= 3: mobilities are averaged between adjacent elements,

permeability is harmonic weighted.

 33

 = 4: mobility and permeability are both harmonic weighted.

MOP(12) Determines interpolation procedure for time dependent sink/source

data (flow rates and enthalpies).

= 0: triple linear interpolation; tabular data are used to obtain

interpolated rates and enthalpies for the beginning and end

of the time step; the average of these values is then used.

= 1: step function option; rates and enthalpies are taken as

averages of the table values corresponding to the beginning

and end of the time step.

=2: rigorous step rate capability for time dependent generation

data. A set of times ti and generation rates qi provided in

data block GENER is interpreted to mean that sink/source

rates are piecewise constant and change in discontinuous

fashion at table points.

MOP(14) Specifies if 5- or 8-character elements are used in the mesh.

 = 0: 5-character elements are used.

 = 1: 8-character elements are used.

MOP(15) Determines conductive heat exchange with impermeable confining

layers

 = 0: heat exchange is off.

= 1: heat exchange is on (for gridblocks that have a non-zero

heat transfer area; see data block ELEME). This option has

not been implemented in TOUGH2-MP.

MOP(16) Provides automatic time step control. Time step size will be

increased if convergence occurs within ITER ≤ MOP(16) Newton-

Raphson iterations. It is recommended to set MOP(16) in the range

of 2 - 4.

MOP(17) Specifies generation of a flow9.dat file for T2R3D transport

simulations (EOS9 only).

 = 0: no.

 = 1: yes.

 34

 MOP(18) Selects handling of interface density.

 = 0: perform upstream weighting for interface density.

> 0: average interface density between the two gridblocks.

However, when one of the two phase saturations is zero,

upstream weighting will be performed.

MOP(19) Switch used by different EOS modules for conversion of primary

variables.

MOP(20) Allows for different formats of CONNE and GENER indexes.

 = 0: use format (16I5).

 = 1: use format (10I8)

 MOP(21) Allows for one more N/R iteration after solution.

 = 0: no need for one more iteration.

 = 1: perform one more iteration after convergence.

MOP(24) Determines handling of multiphase diffusive fluxes at interfaces.

=0: harmonic weighting of fully coupled effective multiphase

diffusivity.

=1: separate harmonic weighting of gas and liquid phase

diffusivities.

 TEXP Parameter for temperature dependence of gas phase diffusion

 coefficient.

BE (Optional) parameter for effective strength of enhanced vapor

diffusion; if set to a non-zero value, will replace the parameter

group φτ0τβ for vapor diffusion.

MCYCF Allows for more time steps to be run for each simulation by

MCYC = MCYCF, if MCYCF > MCYC.

Record PARAM.2

 Format (4E10.4, A5, 5X,3E10.4)

TSTART, TIMAX, DELTEN, DELTMX, ELST, GF, REDLT,

SCALE

 TSTART Starting time of simulation in seconds (default is 0).

 35

TIMAX Time in seconds at which simulation should stop (default is

infinite).

DELTEN Length of time steps in seconds. If DELTEN is a negative integer,

DELTEN = -NDLT, the program will proceed to read NDLT

records with time step information. Note that -NDLT must be

provided as a floating point number, with decimal point.

 DELTMX Upper limit for time step size in seconds (default is infinite)

ELST Writes a file for time versus primary variables for selected

elements at all the times, when ELST = RICKA (Same as the

function with keyword FOFT).

 GF Magnitude (m/sec2) of the gravitational acceleration vector.

 Blank or zero gives "no gravity" calculation.

REDLT Factor by which time step is reduced in case of convergence failure

or other problems (default is 4). If REDLT<0.0, REDLT*(-1.0)

will be used as increasing rate for time-step size.

 SCALE Scale factor to change the size of the mesh (default = 1.0).

 Record PARAM.2.1.1 (optional, ELST = RICKA only)

 Format (I10)

 NELIST

NELIST Specifies the total number of elements (>1) for which time versus

primary variables is printed at each time step into files:

FOFT_P.xxx. The file extension xxx is the identification number

of the processor at which the output was generated.

Record ROCKS.2.1.2, 2.1.3, etc (optional, ELST = RICKA only) Number of

records = NELIST

 Format (A5) for MOP(14) = 0 or Format (A8) for MOP(14) = 1.

 EPLIST(I)

EPLIST(I), I = 1,2, …, NELIST, element’s names for which time versus

primary variables needs to be printed at each time step into files:

FOFT_P.xxx.

 36

Record PARAM.2.2.1, 2.2.2, etc.

 Format (8E10.4)

 (DLT(I), I = 1, 100)

 DLT(I) Length (in seconds) of time step I.

This set of records is optional for DELTEN = - NDLT, a negative

integer. Up to 13 records can be read, each containing 8 time step

data. If the number of simulated time steps exceeds the number of

DLT(I), the simulation will continue with time steps equal to the

last non-zero DLT(I) encountered. When automatic time step

control is chosen (MOP(16) > 0), time steps following the last

DLT(I) input by the user will increase according to the

convergence rate of the Newton-Raphson iteration. Automatic time

step reduction will occur if the maximum number of Newton-

Raphson iterations is exceeded (parameter NOITE, record

PARAM.1)

 Record PARAM.3

 Format (6E10.4)

 RE1, RE2, U, WUP, WNR, DFAC

RE1 Convergence criterion for relative error (default= 10-5).

RE2 Convergence criterion for absolute error, see (default= 1).

U Not be used

WUP Upstream weighting factor for mobilities and enthalpies at

interfaces (default = 1.0 is recommended). 0 ≤ WUP ≤ 1.

WNR Weighting factor for increments in Newton/Raphson - iteration

 (default = 1.0 is recommended). 0 < WNR ≤ 1.

 DFAC Increment factor for numerically computing derivatives

(default value is DFAC = 10 - k/2, where k, evaluated internally, is

the number of significant digits of the floating point processor used;

for 64-bit arithmetic, DFAC ≈ 10-8).

 37

Record PARAM.4 Introduces a set of primary variables which are used as default

initial conditions for all gridblocks that are not assigned by means

of data blocks INDOM or INCON. Option START is necessary to

use default INCON.

 Format (4E20.14)

 DEP(I), I = 1, NK+1

The number of primary variables, NK+1, is normally assigned

internally in the EOS module, and is usually equal to the number

NEQ of equations solved per gridblock. See data block MULTI for

special assignments of NK. Different sets of primary variables are

in use for different EOS modules.

INDOM introduces domain-specific initial conditions. These will supersede

default initial conditions specified in PARAM.4, and can be

overwritten by element-specific initial conditions in data block

INCON. Option START is needed to use INDOM conditions.

 Record INDOM. l

 Format(A5)

 MAT

 MAT Name of a reservoir domain, as specified in data block ROCKS.

 Record INDOM.2

 Format(4E20.13)

 Xl, X2, X3, ……

A set of primary variables assigned to all gridblocks in the domain

specified in record INDOM. l. Different sets of primary variables

are used for different EOS modules.

 Record INDOM.3

 38

A blank record closes the INDOM data block. Repeat records

INDOM. l and INDOM.2 for as many domains as desired. The

ordering is arbitrary and need not be the same as in block ROCKS.

 INCON introduces element-specific initial conditions.

 Record INCON.1

 For MOP(14) = 0, 5-character element

 Format (A3, I2, 2I5,E15.9)

 EL, NE, NSEQ, NADD, PORX

For MOP(14) = 1, 8 character element

 Format (A6, I2)

 EL, NE

 EL, NE Code name of element.

NSEQ Number of additional elements with the same initial conditions

(used only for 5-character element name).

NADD Increment between the code numbers of two successive elements

with identical initial conditions (used only for 5-character element

name).

PORX Porosity; if zero or blank, porosity will be taken as specified in

block ROCKS if option START is used.

 Record INCON.2 specifies primary variables.

 Format (4E20.14)

 Xl, X2, X3, X4

A set of primary variables for the element specified in record

INCON.l. INCON specifications will supersede default conditions

specified in PARAM.4, and domain-specific conditions that may

have been specified in data block INDOM. Different sets of

primary variables are used for different EOS modules.

Record INCON.3 A blank record closes the INCON data block. Alternatively,

initial condition information may terminate on a record

with “+++” typed in the first three columns, followed by

 39

time stepping information. This feature is used for a

continuation run from a previous TOUGH2-MP simulation.

 NOVER (optional)

One record with NOVER typed in columns 1-5 will suppress

printing of a summary of versions and dates of the program units

used in a TOUGH2-MP run.

SELEC (optional) introduces a number of integer and floating point

parameters that are used for different purposes in different

TOUGH2 modules.

 Record SELEC.1

 Format(16I5)

 IE(I), I=1,16

IE(1) number of records with floating point numbers that will be read

(default is IE(1) = 1; maximum values is 64).

 Record SELEC.2, SELEC.3, ..., SELEC.IE(1)*8

 Format(8E10.4)

 FE(I), I=1,IE(1)*8

Provide as many records with floating point numbers as specified

in IE(1), up to a maximum of 64 records.

RPCAP introduces information on relative permeability and capillary

pressure functions, which will be applied for all flow domains for

which no data were specified in records ROCKS.1.2 and

ROCKS.1.3. A catalog of relative permeability and capillary

pressure functions is presented in Appendix B and Appendix C,

respectively.

 Record RPCAP.1

 Format (I5,5X,7E10.4)

 IRP, (RP(I),I = 1, 7)

 40

 IRP Integer parameter to choose type of relative permeability function

 (see Appendix B).

 RP(I), I = 1, ..., 7 parameters for relative permeability function (Appendix B).

 Record RPCAP.2

 Format (I5,5X,7E10.4)

 ICP, (CP(I), I = 1, 7)

 ICP Integer parameter to choose type of capillary pressure function

 (see Appendix C).

CP(I) I = 1, ..., 7 parameters for capillary pressure function (Appendix C).

TIMES permits the user to obtain printout at specified times (optional).

This printout will occur in addition to printout specified in record

PARAM.1.

 Record TIMES.1

 Format (2I5,2E10.4)

 ITI, ITE, DELAF, TINTER

 ITI Number of times provided on records TIMES.2, TIMES.3, etc.,

 (see below; restriction: ITI ≤ 100).

 ITE Total number of times desired (ITI ≤ ITE ≤ 100; default is ITE = I

 TI).

DELAF Maximum time step size after any of the prescribed times have

been reached (default is infinite).

 TINTER Time increment for times with index ITI, ITI+1, ..., ITE.

 Record TIMES.2, TIMES.3, etc.

 Format (8E10.4)

 (TIS(I), I = l, ITI)

 TIS(I) List of times (in ascending order) at which printout is desired.

 41

ELEME introduces element (gridblock) information. See Section 4.4 for

additional explanations.

 Record ELEME.1

 For MOP(14) = 0, 5-character element

 Format (A3, I2, 2I5, A3, A2, 6E10.4)

EL, NE, NSEQ, NADD, MA1, MA2, VOLX, AHTX, PMX, X, Y,

Z

For MOP(14) = 1, 8-character element

 Format (A6, I2, 7X, A3, A2, 6E10.4)

 EL, NE, MA1, MA2, VOLX, AHTX, PMX, X, Y, Z

EL, NE Five-character (or eight-character with MOP(14) = 1) code name

of an element. The first three or six characters are arbitrary; the last

two characters must be numbers.

NSEQ Number of additional elements having the same volume and

belonging to the same reservoir domain (Only for MOP(14) = 0).

NADD Increment between the code numbers of two successive elements.

(Only for MOP(14) = 0)

MA1, MA2 A five-character material identifier corresponding to one of the

reservoir domains as specified in block ROCKS. If the first three

characters are blanks and the last two characters are numbers then

they indicate the sequence number of the domain as entered in

ROCKS. If both MA1 and MA2 are left blank the element is by

default assigned to the first domain in block ROCKS.

 VOLX Element volume (m3).

AHTX Interface area (m2) for heat exchange with semi-infinite confining

beds.

PMX permeability modifier (optional, active only when a domain

‘SEED’ has been specified in the ROCKS block; see TOUGH2 V2

User’s Guide). It will be used as multiplicative factor for the

permeability parameters from block ROCKS. Simultaneously,

 42

strength of capillary pressure will be scaled as 1/SQRT(PMX).

PMX = 0 will result in an impermeable block.

Random permeability modifiers can be generated internally, see

detailed comments in the TOUGH2-MP output file. The PMX may

be used to specify spatially correlated heterogeneous fields, but

users need their own preprocessing programs for this, as TOUGH2

provides no internal capabilities for generating such fields.

X, Y, Z Cartesian coordinates of gridblock centers. These may be included

in the ELEME data to make subsequent plotting of results more

convenient. The coordinate data are not used internally by

TOUGH2-MP, except with EOS9 for initialization of a gravity-

capillary equilibrium.

 Repeat record ELEME.1 for the number of elements desired.

 Record ELEME.2 A blank record closes the ELEME data block.

CONNE introduces information for the connections (interfaces) between

elements. See Section 4.4 for additional explanations.

 Record CONNE.1

For MOP(14) = 0, 5-character element

 Format (A3, I2, A3, I2, 4I5, 5E10.4)

EL1, NE1, EL2, NE2, NSEQ, NAD1, NAD2, ISOT, D1, D2,

AREAX, BETAX, SIGX/IFM_CON

For MOP(14) = 1, 8-character element

 Format (A6, I2, A6, I2, 9X, I5, 5E10.4)

EL1, NE1, EL2, NE2, ISOT, D1, D2, AREAX, BETAX,

SIGX/IFM_CON

 EL1, NE1 Code name of the first element.

 EL2, NE2 Code name of the second element.

NSEQ Number of additional connections in the sequence (for MOP(14)=0

only).

 43

NAD1 Increment of the code number of the first element between two

successive connections (for MOP(14)=0 only).

 NAD2 Increment of the code number of the second element between two

 successive connections (for MOP(14)=0 only).

ISOT Set equal to 1, 2, or 3; specifies absolute permeability to be

PER(ISOT) for the materials in elements (EL1, NE1) and (EL2,

NE2), where PER is read in block ROCKS. This allows

assignment of different permeabilities, e.g., in the horizontal and

vertical direction.

Note that in this version, several schemes of fracture-matrix (F-M)

interface area reduction for F-M local connection and mobility

weighting are implemented using ISOT, which is set to a negative

integer as follows:

= -1 F-M interconnection area used for calculating flow of a

fluid is multiplied by the upstream saturation of the fluid,

= -2 mobility of the lower absolute permeability block is used

for flow calculation along this connection.

= -3 F-M interconnection area for calculating flow of a fluid is

multiplied by a constant factor (= RP(7) from fracture

rock material) and by the upstream relative permeability to

the fluid. This scheme is called weeps type model.

= -4 F-M interconnection area for calculating flow of a fluid is

multiplied by the upstream relative permeability to the fluid,

= -9 F-M interconnection area for calculating flow of a fluid is

multiplied by a constant factor (= RP(6) from fracture

rock material),

= -10 F-M interconnection area for calculating flow of the liquid

is modified by the active fracture model (Liu et al., 1998).

 44

D1 Distance (m) from first element to common interface.

D2 Distance (m) from second element to common interface.

 AREAX Interface area (m2).

BETAX Cosine of the angle between the gravitational acceleration vector

and the line between the two elements. GF * BETAX > 0 (<0)

corresponds to first element being above (below) the second

element.

IFM_CON Connection identifier,

(For Ver 1.4) = 0: for connection between single-continuum, matrix, and/or

ECM elements,

= 1.0: for connection between fracture elements in a dual-

continuum model (dual-permeability, double-porosity, MINC, etc.),

= 2.0: for local connection between fracture-matrix elements in a

dual-continuum grid (dual-permeability, double-porosity, MINC,

etc.), and

= 3.0: for global connection between fracture-matrix, fracture-

ECM, or fracture-single-continuum elements in a hybrid, dual-

continuum grid (a combined, single-continuum, ECM, dual-

permeability, double-porosity, and MINC, etc.).

SIGX “radiant emittance” factor for radiative heat transfer, which for a

(For Ver 2.0) perfectly “black” body is equal to 1. The rate of radiative heat

transfer between the two grid blocks is

)(*** 4

1

4

20 TTAREAXSIGXGrad −= σ

where σ0= 5.6687e-8 J/m2 K4 s is the Stefan-Boltzmann constant,

and T1 and T2 are the absolute temperatures of the two grid blocks.

SIGX may be entered as a negative number, in which case the

absolute value will be used, and heat conduction at the connection

will be suppressed. SIGX = 0 will result in no radiative heat

transfer.

 45

 Repeat record CONNE.1 for the number of connections desired.

Record CONNE.2 A blank record closes the CONNE data block.

Alternatively, connection information may terminate on a

record with ‘+++’ typed in the first three columns, followed

by element cross-referencing information. This is the

termination used when generating a MESH file with

TOUGH2.

 GENER introduces sinks and/or sources.

 Record GENER.1

For MOP(14) = 0, 5-character element

 Format (A3, I2, A3, I2, 4I5, 5X, A4, A1, 3E10.4)

EL, NE, SL, NS, NSEQ, NADD, NADS, LTAB, TYPE, ITAB,

GX, EX, HX

For MOP(14) = 1, 8-character element

 Format (A6, I2, A3, I2, 12X, I5, 5X, A4, A1, 3E10.4)

 EL, NE, SL, NS, LTAB, TYPE, ITAB, GX, EX, HX

 EL, NE Code name of the element containing the sink/source.

SL, NS Code name of the sink/source. The first three characters are

arbitrary, the last two characters must be numbers.

NSEQ Number of additional sinks/sources with the same

injection/production rate (not implemented in TOUGH2-MP).

NADD Increment between the code numbers of two successive elements

with identical sink/source (not implemented in TOUGH2-MP).

NADS Increment between the code numbers of two successive

sinks/sources (not implemented in TOUGH2-MP).

LTAB Number of points in table of generation rate versus time. Set 0 or 1

for constant generation rate. For wells on deliverability, LTAB

denotes the number of open layers, to be specified only for the

bottommost layer.

 46

TYPE Specifies different options for fluid or heat production and

injection. For example, different fluid components may be injected,

the nature of which depends on the EOS module being used.

Different options for considering wellbore flow effects may also be

specified.

 HEAT introduces a heat sink/source.

 COMl

 - component 1 (water).

 WATE

 injection

 COM2 - component 2

 COM3 - component 3

 …

 MASS-mass production rate specified.

DELV-well on deliverability, i.e., production occurs against

specified bottomhole pressure. If well is completed in more than

one layer, bottommost layer must be specified first, with number of

layers given in LTAB. Subsequent layers must be given

sequentially for a total number of LTAB layers.

ITAB Unless left blank, table of specific enthalpies will be read (LTAB >

1 only).

GX Constant generation rate; positive for injection, negative for

production; GX is mass rate (kg/sec) for generation types COMl,

COM2. COM3, etc., and MASS; it is energy rate (J/s) for a HEAT

sink/source. For wells on deliverability, GX is productivity index

PI (m3).

EX Fixed specific enthalpy (J/kg) of the fluid for mass injection

(GX>0). For wells on deliverability against fixed bottomhole

 47

pressure, EX is bottomhole pressure Pwb (Pa), at the center of the

topmost producing layer in which the well is open.

HX Tickness of layer (m; wells on deliverability with specified

bottomhole pressure only).

 Record GENER.l.l (optional, LTAB > l only)

 Format (4E14.7)

 Fl(L), L=l, LTAB

 F1 Generation times

 Record GENER.1.2 (optional, LTAB > 1 only)

 Format (4E14.7)

 F2(L), L=1, LTAB

 F2 Generation rates.

 Record GENER.1.3 (optional, LTAB > 1 and ITAB non-blank only)

 Format (4E14.7)

 F3(L), L=1, LTAB

 F3 Specific enthalpy of produced or injected fluid.

 Repeat records GENER.1, 1.1, 1.2, and 1.3 for the number of

 sinks/sources desired.

 Record GENER.2 A blank record closes the GENER data block.

Alternatively, generation information may terminate on a record

with ‘+++’ typed in the first three columns, followed by element

cross-referencing information.

DIFFUSION (optional; needed only for NB≥8, for Ver 2.0 only) introduces

 diffusion coefficients.

Record DIFFU.1

Format(8E10.4)

FDDIAG(I,1), I=1,NPH

diffusion coefficients for mass component # 1 in all phases (I=1:

gas; I=2: aqueous; etc.)

Record DIFFU.2

 48

Format(8E10.4)

FDDIAG(I,2), I=1,NPH

diffusion coefficients for mass component # 2 in all phases (I=1:

gas; I=2: aqueous; etc.)

Provide a total of NK records with diffusion coefficients for all NK

mass components. See Pruess et al. (1999) for additional parameter

specifications for diffusion.

FOFT (optional) introduces a list of elements (grid blocks) for which time

dependent data are to be written out for plotting to a file called

FOFT_P.xxx during the simulation. The file extension xxx is the

identification number of the processor at which the output was

generated.

Record FOFT.1

Format(A5) (for MOP(14)=0)

Format(A8) (for MOP(14)=1)

EOFT(I)

EOFT is an element name. Repeat for up to 100 elements, one per

record.

Record FOFT.2 A blank record closes the FOFT data block.

COFT (optional) introduces a list of connections for which time-

dependent data are to be written out for plotting to file

FOFT_P.xxx during the simulation.

Record COFT.1

Format(A10) (for MOP(14)=0)

Format(A16) (for MOP(14)=1)

ECOFT(I)

 49

ECOFT is a connection name, i.e., an ordered pair of two element

names. Repeat for up to 100 connections, one per record.

Record COFT.2 A blank record closes the COFT data block.

GOFT (optional) introduces a list of sinks/sources for which time-

dependent data are to be written out for plotting to file

FOFT_P.xxx during the simulation.

Record GOFT.1

Format(A5) (for MOP(14)=0)

Format(A8) (for MOP(14)=1)

EGOFT(I)

EGOFT is the name of an element in which a sink/source is

defined. Repeat for up to 100 sinks/sources, one per record. When

no sinks or sources are specified here, by default tabulation will be

made for all.

Record GOFT.2 A blank record closes the GOFT data block.

TIMBC (optional) introduces a table (external data file, named as

“timvsp.dat”, must be located at the simulation working directory)

for time-dependent pressure boundary conditions.

 File “timevsp.dat” format:

 FORMAT(2I5)

NPOINT, NTPTAB (number of time points and gridblocks at

which pressure boundary conditions will be specified)

FORMAT(4E14.7)

 50

 TIMBCV(I), I=1, NPOINT (times for each time point)

FORMAT(A5) for MOP(14)=0, and FORMAT(A8) for

MOP(14)=1

BCELEM(I), I=1, NTPTAB (name list of the NTPRAB gridblocks)

FORMAT(4E14.7)

PGBCEL(I,J), I=1, NPOINT; J=1,NTPTAB (boundary pressure

provided at the NPONIT time points for all the NTPTAB

gridblocks

RTSOL (optional) introduces additional time stepping, iteration and solver

parameters. This keyword inherits from VER 1.4. Most parameters

under this keyword have not been used in TOUGH2-MP.

Record RTSOL.1

Format (2E10.3, 6I5)

PREC, RTOL, INFO, IPLVL, NITMX, NORT, KACCEL, IREDB

 All these parameters have not been used in this version.

Record RTSOL.2

Format (7F10.3,I5)

DTMIN, DTMAX, DSTNOM, DXTMAX,TMULFC, RELXSN,

RELXXN, ICOLEY

DTMIN minimum time step size in seconds.

DSTNOM maximum allowable saturation change per time step (default=0.2).

TMULFC Time step size increasing rate when Newton iteration converges in

less then MOP(16) iterations, see also REDLT.

ICOLEY flag for evaluating an underrelaxation factor for updating primary

variables over Newton iteration;

= 0: if no underrelaxation scheme is used,

= 1: if Cooley underrelaxation scheme is used, and

 51

= 2: if an underrelaxation scheme is determined using DSTNOM,

normalized maximum changes in saturation.

 Other parameters have not been used in this version.

 ENDCY closes the TOUGH2 input file and initiates the simulation.

Note on closure of blocks CONNE, GENER, and INCON

The conventional way to indicate the end of any of the above data blocks is by means of a

blank record. There is an alternative available if the user constructs an input file from

files MESH, GENER, or SAVE, which have been generated by a previous TOUGH2 or

TOUGH2-MP run. These files are written exactly according to the specifications of data

blocks ELEME and CONNE (file MESH), GENER (file GENER), and INCON (file

SAVE), except that the CONNE, GENER, and INCON data terminate on a record with

“+++” in Columns 1-3, followed by some cross-referencing (indexing) and restart

information. TOUGH2-MP will accept this type of input, and in this case there is no

blank record at the end of an indicated data block. The cross-referencing information will

not be read by the parallel code, because this information may be not correct when the

model has a total of more than 100,000 gridblocks. The parallel code uses a very efficient

index searching algorithm that computes the connection and gridblock indices at the

beginning of every simulation run.

4.3 Input Formats for MESHMAKER

The MESHMaker module performs internal mesh generation and processing. This

module has not been parallelized and is run on the master processor only. In general, the

input and output of MESHMaker for TOUGH2-MP are identical to V2.0, except that the

parallel version allows generating multi-million gridblocks for Cartesian X-Y-Z mesh.

The input for MESHMaker has a modular structure and a variable number of records; it

begins with keyword MESHM and ends with a blank record.

There are three submodules available in MESHMaker: keywords RZ2D or RZ2DL

invoke generation of a one or two-dimensional radially symmetric R-Z mesh; XYZ

 52

initiates generation of a one, two, or three-dimensional Cartesian X-Y-Z mesh; and

MINC calls a modified version of the GMINC program (Pruess, 1983) to subpartition a

primary porous medium mesh into a secondary mesh for fractured media, using the

method of “multiple interacting continua” (Pruess and Narasimhan, 1985). The meshes

generated under keyword RZ2D or XYZ are internally written to file MESH. The MINC

processing operates on the data in file MESH, so that invoking the RZ2D or XYZ options,

or assignment of ELEME and CONNE blocks in the INPUT file, must precede the

MESHMaker/MINC data. We shall now separately describe the preparation of input data

for the three MESHMaker submodules.

4.3.1 Generation of Radially Symmetric Grids

Keyword RZ2D (or RZ2DL) invokes generation of a radially symmetric mesh. Values

for the radii to which the gridblocks extend can be provided by the user or can be

generated internally (see below). Nodal points will be placed half-way between

neighboring radial interfaces. When RZ2D is specified, the mesh will be generated by

columns; i.e., in the ELEME block, we will first have the gridblocks at smallest radius for

all layers, then the next largest radius for all layers, and so on. With keyword RZ2DL, the

mesh will be generated by layers; i.e., in the ELEME block, we will first have all

gridblocks for the first (top) layer from smallest to largest radius, then all gridblocks for

the second layer, and so on. Apart from the different ordering of elements, the two

meshes for RZ2D and RZ2DL are identical. Assignment of inactive elements would be

made by using a text editor on the RZ2D-generated MESH file, and moving groups of

elements towards the end of the ELEME block, past a dummy element with zero volume.

RZ2D makes it easy to declare a vertical column inactive, facilitating assignment of

boundary conditions in the vertical, such as a gravitationally equilibrated pressure

gradient. RZ2DL, on the other hand, facilitates implementation of areal (top and bottom

layer) boundary conditions.

 53

RADII is the first keyword following RZ2D; it introduces data for

defining a set of interfaces (gridblock boundaries) in the radial

direction.

 Record RADII.l

 Format(I5)

 NRAD

NRAD Number of radius data that will be read. At least one radius must

be provided, indicating the inner boundary of the mesh.

 Record RADII.2, RADII.3, etc.

 Format(8E10.4)

 RC(I), I = 1, NRAD

 RC(I) A set of radii in ascending order.

 EQUIDistant introduces data on a set of equal radial increments.

 Record EQUID. l

 Format(I5, 5X, E10.4)

 NEQU, DR

 NEQU Number of desired radial increments.

 DR Magnitude of radial increment.

Note: At least one radius must have been defined via block RADII before EQUID

can be invoked.

 LOGARithmic introduces data on radial increments that increase from one to the

 next by the same factor (∆Rn+l = f • ∆Rn).

 Record LOGAR. l

 Format(A5, 5X, 2E10.4)

 NLOG, RLOG, DR

 NLOG number of additional interface radii desired.

 RLOG Desired radius of the last (largest) of these radii.

 54

 DR reference radial increment: the first ∆R generated will be equal

to f • DR, with f internally determined such that the last increment

will bring total radius to RLOG. f<1 for decreasing radial

increments is permissible. If DR is set equal to zero, or left blank,

the last increment DR generated before keyword LOGAR will be

used as default.

Additional blocks RADII, EQUID, and LOGAR can be specified

in arbitrary order.

Note: At least one radius must have been defined before LOGAR can be invoked.

If DR = 0, at least two radii must have been defined.

LAYER introduces information on horizontal layers, and signals closure of

RZ2D input data.

 Record LAYER. l

 Format(I5)

 NLAY

 NLAY Number of horizontal grid layers.

 Record LAYER.2

 Format(8E10.4)

 H(I), I = 1, NLAY

H(I) A set of layer thicknesses, from top layer downward. By default,

zero or blank entries for layer thickness will result in assignment of

the last preceding nonzero entry. Assignment of a zero layer

thickness, as needed for inactive layers, can be accomplished by

specifying a negative value.

The LAYER data close the RZ2D data block. Note that one blank

record must follow to indicate termination of the MESHM data

block. Alternatively, keyword MINC can appear to invoke MINC-

processing for fractured media (see below).

 55

4.3.2 Generation of Rectilinear Grids

 XYZ invokes generation of a Cartesian (rectilinear) mesh.

 Record XYZ.l

 Format(E10.4)

 DEG

DEG Angle (in degrees) between the Y-axis and the horizontal. If

gravitational acceleration (GF in record PARAM.2) is specified

positive, -90° < DEG < 90° corresponds to grid layers going from

top down. Grids can be specified from bottom layer up by setting

GF or BETA negative. Default (DEG = 0) corresponds to

horizontal Y- and vertical Z-axis. X-axis is always horizontal.

 Record XYZ.2

 Format(A2, 3X, I5, E10.4)

 NTYPE, NO, DEL

NTYPE Set equal to NX, NY or NZ for specifying grid increments in X, Y,

or Z direction.

 NO Number of grid increments desired.

DEL Constant grid increment for NO gridblocks, if set to a non zero

value.

Record XYZ.3 (optional, DEL = 0. or blank only)

 Format(8E10.4)

 DEL(I), I = 1, NO

DEL(I) A set of grid increments in the direction specified by NTYPE in

record XYZ.2. Additional records with formats as XYZ.2 and

XYZ.3 can be provided, with X, Y, and Z-data in arbitrary order.

 Record XYZ.4 A blank record closes the XYZ data block.

Note that the end of block MESHMaker is also marked by a blank record. Thus,

when MESHMaker/XYZ is used, there will be two blank records at the end of the

corresponding input data block.

 56

4.3.3 MINC Processing for Fractured Media

MINC invokes postprocessing of a primary porous medium mesh from

file MESH. The input formats in data block MINC are identical to

those of the GMINC program (Pruess, 1983), with two

enhancements: there is an additional facility for specifying global

matrix-matrix connections (“dual permeability”); further, only

active elements will be subjected to MINC-processing, the

remainder of the MESH remaining unaltered as porous medium

gridblocks.

PART is the first keyword following MINC; it will be followed on the

same line by parameters TYPE and DUAL with information on the

nature of fracture distributions and matrix-matrix connections.

 Format(2A5, 5X, A5)

 PART, TYPE, DUAL

PART Identifier of data block with partitioning parameters for secondary

mesh.

TYPE A five-character word for selecting one of the six different

proximity functions provided in MINC (Pruess, 1983).

ONE-D: a set of plane parallel infinite fractures with matrix

block thickness between neighboring fractures

equal to PAR(l).

TWO-D: two sets of plane parallel infinite fractures, with

arbitrary angle between them. Matrix block

thickness is PAR(l) for the first set, and PAR(2) for

the second set. If PAR(2) is not specified explicitly,

it will be set equal to PAR(l).

 57

THRED: three sets of plane parallel infinite fractures at right

angles, with matrix block dimensions of PAR(l),

PAR(2), and PAR(3), respectively. If PAR(2)

and/or PAR(3) are not explicitly specified, they will

be set equal to PAR(l) and/or PAR(2), respectively.

Note: a user wishing to employ a different proximity function than provided in

MINC needs to replace the function subprogram PROX(x) in file meshm.f with a

routine of the form:

 FUNCTION PROX(x)

 PROX = (arithmetic expression in x)

 RETURN

 END

It is necessary that PROX(x) is defined even when x exceeds the maximum

possible distance from the fractures, and that PROX = 1 in this case. Also, when

the user supplies his/her own proximity function subprogram, the parameter

TYPE has to be chosen equal to ONE-D, TWO-D, or THRED, depending on the

dimensionality of the proximity function. This will assure proper definition of the

innermost nodal distance (Pruess, 1983).

DUAL A five-character word for selecting the treatment of global

matrix flow.

blank: (default) Global flow occurs only through the fracture continuum,

while rock matrix and fractures interact locally by means of

interporosity flow (double-porosity model).

MMVER: global matrix-matrix flow is permitted only in the vertical;

otherwise like the double-porosity model; for internal

consistency this choice should only be made for flow

systems with one or two predominantly vertical fracture

sets.

 58

MMALL: Global matrix-matrix flow in all directions; for internal

consistency only two continua, representing matrix and

fractures, should be specified (“dual-permeability”).

 Record PART.l

 Format (2I3, A4, 7E10.4)

 J, NVOL, WHERE, (PAR(I), I = 1, 7)

 J Total number of multiple interacting continua (J < 36).

NVOL Total number of explicitly provided volume fractions (NVOL < J).

If NVOL < J, the volume fractions with indices NVOL+l, ..., J will

be internally generated; all being equal and chosen such as to yield

proper normalization to 1.

WHERE Specifies whether the sequentially specified volume fractions

begin with the fractures (WHERE = ‘OUT ‘) or in the interior of the

matrix blocks (WHERE = 'IN ').

 PAR(I), I = 1, 7 Holds parameters for fracture spacing (see above).

 Record PART.2.1, 2.2, etc.

 Format (8E10.4)

 (VOL(I), I = 1, NVOL)

VOL(I) Volume fraction (between 0 and 1) of continuum with index I (for

WHERE = ‘OUT ‘) or index J+ l - I (for WHERE = ‘IN ‘). NVOL

volume fractions will be read. For WHERE = ‘OUT ‘, I = 1 is the

fracture continuum, I = 2 is the matrix continuum closest to the

fractures, I = 3 is the matrix continuum adjacent to I = 2, etc. The

sum of all volume fractions must not exceed 1.

4.4 Special Input Requirements for TOUGH2-MP

In some cases, TOUGH2-MP needs to be run in batch mode. To run a job in batch mode,

the user submits a job to a computer and the computer schedules the job in a queue.

When the requested number of processors is available, the job will be run. In batch

running mode, all data are provided in input files, since run-time communication is not

 59

feasible. For both batch and interactive mode, the input files for the parallel run include:

INFILE

This file is in the same data format as a TOUGH2 input file, as discussed in Section 4.2.

In this input file, data are organized in blocks that are defined by five-character keywords

typed in Columns 1-5. The first record must be a problem title of up to 80 characters. The

last record usually is ENDCY. Data records beyond ENDCY will be ignored. The most

important data blocks include ROCKS, MULTI, PARAM, ELEME, CONNE, INCON,

and GENER. All input data in INFILE are in fixed format and standard metric (SI) units.

Detailed information about this file format can be found in Section 4.2

The blocks of ELEME, CONNE, GENER and INCON can be extremely large. It is good

practice to provide these blocks through separate data files. An alternative input for

ELEME and CONNE blocks is through the MESH file or through two binary files:

MESHA and MESHB. The two binary files are intermediate files which are created by

TOUGH2-MP during its first run for a model. If MESHA and MESHB exist in the

working folder, the code will ignore MESH file and read information directly from these

two files. If the mesh is changed, MESHA and MESHB must be deleted from the

working folder to make the changes take effect. The two files have completely different

data formats from the ELEME and CONNE blocks. The detailed format information is

given in the following.

MESHA, MESHB

The purpose of replacing file MESH (or blocks ELEME and CONNE in an input file)

with MESHA and MESHB is to reduce the memory requirement for the master processor

and to enhance I/O efficiency. Both MESHA and MESHB are binary files. These two

files contain all information provided by file MESH. There are two groups of large data

blocks within a TOUGH2 mesh file: one with dimensions equal to the number of

gridblocks, the other with dimensions equal to the number of connections (interfaces). To

read and use computer memory efficiently, the input data are organized in sequential and

binary format. Large data blocks are read one by one through a temporary full-size array

 60

and then distributed to processors one by one. This method avoids storing all input data in

one single processor and enhances the I/O efficiency and total storage capacity.

The file MESHA is written (to file unit 20 that was opened as an unformatted file) in the

following sequence:

[Keni: somewhere NCON must be written; please correct this.]

write(20) NEL

write(20) (EVOL(iI),iI=1,NEL)

write(20) (AHT(iI),iI=1,NEL)

 write(20) (PMX(iI),iI=1,NEL)

write(20) (gcoord(iI,1),iI=1,NEL)

write(20) (gcoord(iI,2),iI=1,NEL)

write(20) (gcoord(iI,3),iI=1,NEL)

write(20) (DEL1(iI), iI=1,NCON)

write(20) (DEL2(iI), iI=1,NCON)

write(20) (AREA(iI), iI=1,NCON)

write(20) (BETA(iI), iI=1,NCON)

write(20) (SIG(iI), iI=1,NCON)

write(20) (ISOX(iI),iI=1,NCON)

 write(20)(ELEM1(iI), iI=1,NCON)

write(20)(ELEM2(iI), iI=1,NCON)

where

NEL Total gridblock number, in 8-byte integer.

NCON Total connection number, in 8-byte integer.

EVOL Element volume (m3), in 8-byte real

AHT Interface area (m2) for heat exchange with semi-infinite confining beds, in

8-byte real.

PMX Permeability modifier, in 8-byte real

gcoord(*,1-3) Cartesian coordinates (X,Y,X) of gridblock center, in 8-byte real.

 61

DEL1, DEL2 Distance (m) from first and second element, respectively, to their common

interface, in 8-byte real.

AREA Interface area (m2), in 8-byte real.

BETA Cosine of the angle between the gravitational acceleration vector and the

line between two elements, in 8-byte real.

SIG “Radiant emittance” factor for radiative heat transfer (Ver2.0), or for

defining the connection property, the connection can be between fractures,

matrices, or fracture and matrix (Ver 1.4), in 8-byte real.

ISOX Specify absolute permeability for the connection, in 4-byte integer.

ELEM1 Code name for the first element of a connection, in 8 characters.

ELEM2 Code name for the second element of a conection, in 8 character.

The file MESHB is written (to file unit 30, unformatted) in the following sequence:

write(30) NCON,NEL

write(30) (ELEM(iI),iI=1,NEL)

write(30) (MA12(iI),iI=1,NEL)

write(30) (NEX1(iI),iI=1,NCON)

write(30) (NEX2(iI),iI=1,NCON)

where

ELEM Code name of the element, in 8 characters.

MA12 Material identifier of the element, in 5 characters.

NEX1, NEX2 First and second element number of the connection, in 4-byte integer.

For more detailed explanation of these parameters, the reader may refer to the TOUGH2

User’s Guide, Version 2.0 (Pruess et al., 1999).

After a first run of each simulation, the material name array MA12 will be replaced by

the material index (array MATX, in 8-byte integer). In addition, NEL will be replaced by

 62

–NEL to inform the program of the replacement. Through this replacement, the material

index searching is avoided for future runs.

MESHA and MESHB can also be created directly from MESH file through a

preprocessing program. For extremely large problems, generation of MESHA and

MESHB is the bottleneck of memory requirement for a simulation using TOUGH2-MP.

By using a preprocessing program, the bottleneck for memory requirement can be

avoided.

PARAL.prm

 PARAL.prm is an optional file providing TOUGH2-MP some parameters. If this file

does not exist in the working folder, the code will take default parameters. These

parameters are needed if a user wants to try different options with the parallel linear

solver, partitioning algorithms, and main program. The following is an example of the

file.

1008680, 4000000, 0

AZ_solver AZ_bicgstab

AZ_scaling AZ_BJacobi

AZ_precond AZ_dom_decomp

AZ_tol 1.0e-6

AZ_overlap 0

AZ_max_iter 250

AZ_conv AZ_rhs

AZ_subdomain_solve AZ_ilut

AZ_output AZ_none

EE_partitioner METIS_Kway

EE_output 100

END OF INPUTS

The three numbers at first line are:

MNEL: Estimated total gridblocks, must be larger than model gridblock number.

 63

MCON: Estimated total connections, must be larger than model connection number.

PartReady: A parameter to inform the program that domain partitioning was done by a

preprocessing program or will be done inside the TOUGH2-MP. If

PartReady=0, the parallel code will perform domain partitioning during

running the code. If PartReady>0, the code will not perform domain

partitioning and partition data will be read directly from file “part.dat” at

the working directory. Default PartReady=0.

The default values of MNEL and NCON are 500,000 and 2,300,000. The two parameters

are required only in generating MESHA and MESHB and when a model has more than

500,000 gridblocks or 2,300,000 connections.

From the second line and below, each line provides a parameter. These parameters give

options or parameters for running the Aztec and METIS packages, and SAVE file output

frequency control. The parameters can be in any order. If one parameter is not present, its

default value will be used. Each line in the file consists of two terms. The first term is

parameter’s name and the second term is its value. Detailed content of the parameters is

discussed below.

AZ_solver Specifies solution algorithm, available solvers:

 AZ_cg conjugate gradient (only applicable to symmetric positive

 definite matrices).

 AZ_gmres restarted generalized minimal residual.

 AZ_cgs conjugate gradient squared.

 AZ_tfqmr transpose-free quasi-minimal residual.

 AZ_bicgstab bi-conjugate gradient with stabilization.

 AZ_lu sparse direct solver (single processor only).

AZ_scaling Specifies scaling algorithm, user can select from:

 AZ_none no scaling.

 AZ_Jacobi point Jacobi scaling.

 AZ_BJacobi Block Jacobi scaling where the block size corresponds to the

 64

 VBR blocks.

 Az_row_sum scale each row so the magnitude of its elements sum to 1.

 AZ_sym_diag symmetric scaling so diagonal elements are 1.

 AZ_sym_row_sum symmetric scaling using the matrix row sums.

AZ_precond Specifies preconditioner. Available selections include:

 AZ_none no preconditioning.

 AZ_Jacobi k step Jacobi (or block Jacobi for DVBR matrices)

 AZ_Neumann Neumann series polynomial.

 AZ_ls least-squares polynomial.

 AZ_sym_GS non-overlapping domain decomposition (additive Schwarz) k

 step symmetric Gauss-Seidel.

 AZ_dom_decomp domain decomposition preconditioner (additive Schwarz).

AZ_tol Specifies tolerance value used in conjunction with convergence tests.

AZ_type_overlap Determines how overlapping subdomain results are combined when

 different processors have computed different values for the same

 unknown.

 AZ_standard the resulting value of an unknown is determined by the

 processor owning that unknown.

 AZ_symmetric average the results obtained from different processors

 corresponding to the same unknown.

AZ_overlap Determines the submatrices factored with the domain decomposition

 algorithms.

AZ_max_iter Maximum number of iterations.

AZ_conv Determines the residual expression used in convergence check and

 printing. Available selections include: AZ_r0, AZ_rhs, AZ_Anorm,

 AZ_noscaled, AZ_sol, AZ_weighted.

AZ_subdomain_solve Specifies the solver to use on each subdomain when AZ_precond

 is set to AZ_dom_decomp, available selections include: AZ_lu,

 AZ_ilut, AZ_ilu, AZ_rilu, AZ_bilu, and AZ_icc.

AZ_reorder Determines whether RCM reordering will be done in conjunction

 with domain decomposition incomplete factorizations, 1 yes; 0 no.

 65

AZ_pre_calc Indicates whether to use factorization information from previous

 calls to AZ_solve, three selections: AZ_calc, AZ_recalc, and

 AZ_reuse.

AZ_output Specifies information to be printed, available selections: AZ_all,

 AZ_none, AZ_warnings, AZ_last, and >0.

EE_partitioner Specifies the partitioner to be used, user can select partitioners from:

METIS_Kway uses the multilevel k-way partitioning algorithm. The

 objective of this partitioning method is to minimize the

 edgecut. It should be used to partition a graph into a large

 number of partitions (greater than 8).

METIS_Vkway uses the multilevel k-way partitioning algorithm. The

 objective of this partitioning method is to minimize the

 total communication volume.

METIS_Recursive uses multilevel recursive bisection. The objective of this

 partitioning method is to minimize the edgecut, this

 function should be used to partition a graph into a small

 number of partitions (less than 8).

EE_output Output control for solution results. The SAVE file will be written

 every EE_output time steps. If EE_output=0, no SAVE file will be

 written out until last time step. A special value of 666888 for this

 parameter will evoke debugging run, which will produce more

 informative output.

More options or parameters for the Aztec parallel linear equation solver can be specified.

For further discussion, readers may refer to Tuminaro et al. (1999). Table 4-2 presents the

default values used in TOUGH2-MP.

 66

 Table 4-2. Default values of the options and parameters

Parameters or options Values

AZ_solver AZ_bicgstab

AZ_scaling AZ_Bjacobi

AZ_pecond AZ_dom_decomp

AZ_tol 1x10-6

AZ_type_overlap AZ_standard

AZ_max_iter 500

AZ_conv AZ_r0

AZ_subdomain_solve AZ_ilut

AZ_reorder 1

AZ_pre_calc AZ_calc

AZ_output AZ_none

EE_partitioner METIS_Kway

EE_output 200

INCON

During initialization of a TOUGH2 run, all gridblocks are first assigned to the default

thermodynamic conditions specified in data block PARAM in file INFILE. The default

initial conditions may be superseded by thermodynamic conditions assigned to individual

gridblocks in disk file INCON. File format of INCON is the same as in the serial version

of the TOUGH2 code.

The INCON file is set up either by user or generated by a previous TOUGH2 run through

an output file SAVE (compatible with formats of file or data block INCON for

initializing a continuation run). The INCON file can be obtained by simply renaming

SAVE file to INCON. If INCON file is set up by the user, only a fraction of the grid

blocks may be specified or the blocks may be in a random sequence. Accordingly,

TOUGH2-MP will perform a gridblock index search first.

 67

GENER

The format of file GENER is the same as the block format described in Section 4.2.

part.dat

If parameter PartReady in “PARAL.prm” has a value larger than 0, the parallel code will

read file “part.dat” from working directory during run-time. The file contains domain-

partitioning results. It is read by the following code:

 open (unit=50,file='part.dat',form='formatted',status='old')

 read(50,133) nparts,edgecut,NEL

 read(50,144) (part(iI),iI=1,NEL)

133 format(3I10)

144 format(10I8)

where

nparts Number of portions that the domain has been partitioned into. It must

 equal to the number of processors/processes used for solving the

 problem.

edgecut Number of cut edges.

nel Total number of elements or gridblocks in the domain.

part Partitioning result of each gridblock. The integer value indicates that the

 gridblock is in which processor.

File “part.dat” can be created through a preprocessing program based on user’s special

requirements, e.g. based on physical boundaries of modeling domain for grid partitioning.

flow9.dat, flow9b.dat

File flow9.dat is required only by the T2R3D module. When running T2R3D for a tracer

or contaminant transport simulation, the file, flow9.dat, will provide flow field

information. This file is generated by flow simulation (EOS9 module) with option

mop(17)=1. File flow9b.dat is an intermediate file which is created by TOUGH2-MP at

its first run. The file is in binary format with the same contents as flow9.dat. If flow9b.dat

 68

exists in the working directory, the code will ignore the flow9.dat file and read

information directly from flow9b.dat. Once the flow9.dat is changed, flow9b.dat must be

deleted from the working folder to make the changes take effect. The purpose of using an

intermediate file flow9b.dat is to reduce the memory requirement for the master

processor and to enhance I/O efficiency.

File flow9b.dat is saved in the following sequence:

write(40) NEL, NCON

write(40) (presl(iI),iI=1,NEL)

write(40) (satl(iI),iI=1,NEL)

write(40) (densl(iI),iI=1,NEL)

write(40) (phi(iI),iI=1,NEL)

write(40) (FLO(iI),iI=1,NCON)

write(40) (vel(iI),iI=1,NCON)

where

NEL Total gridblock number.

NCON Total connection number.

presl Liquid pressure

satl Saturation

densl Liquid density

phi Porosity

FLO Mass flux

vel Darcy velocity

4.5 Output from TOUGH2-MP

TOUGH2-MP produces a variety of output, most of which can be controlled by the user.

Information written in the initialization phase on to the standard output file includes

parameter settings in the main program for dimensioning of problem-size dependent

 69

arrays, and disk files in use. This is followed by documentation on settings of the MOP-

parameters for choosing program options, and on the EOS-module. During execution, the

parallel program can optionally generate a brief message for Newtonian iterations and

time steps. At the end, a summary of subroutines used and parallel computation

information are provided. In TOUGH2-MP, standard output at user-specified simulation

times or time steps is generated by a subroutine called FINALOUT, which is applied to

replace the OUT subroutine in TOUGH2 V1.4/V2.0. Each EOS module comes with its

own routine FINALOUT. The output file for TOUGH2 is replaced by two files in

TOUGH2-MP, named OUTPUT and OUTPUT_DATA. The first file provides problem

initialization, time-stepping, and parallel computing information, and the second file

gives a complete element-by-element and/or connection-by-connection report of

thermodynamic state variables and other important parameters. The sequence for outputs

of gridblocks and connections is not in the original sequence as listed in MESH file. It is

written out processor-by-processor depending on the domain partition results. In

addition, there are some minor differences in naming conventions used by different EOS

modules.

 70

 EEE Number of processors = 12
 EEE Time perform model computaion = 197230.321027040
 EEE of which spent in lin. solv. = 185108.194600105
 EEE and spent on other = 12122.1264269352
 EEE
 EEE Total number of time steps = 20000
 EEE Average time in Aztec per time step = 9.25540973000526
 EEE Average time spent on other per time step = 0.606106321346760
 EEE
 EEE Total number Newton steps = 31183
 EEE Average number of Newton steps per time step 1.55915000000000
 EEE Average time per Newton step = 5.93618941731409
 EEE Average time spent on other per Newton st = 0.388741507453907
 EEE
 EEE Total number of iter in Aztec = 6536842
 EEE Average number of iter per call to Aztec 209.628387262290
 EEE Average time per iter in Aztec = 2.831767917904476E-002
 EEE
 EEE Partitioning algorithm used: METIS_Kway
 EEE Number of edges cut = 14509
 EEE
 EEE Average number elements per proc = 7203.33333333333
 EEE Maximum number elements at any proc = 7386
 EEE Minimum number elements at any proc = 7025
 EEE Allocated LNEL = 9460
 EEE Average number connections per proc = 29559.2500000000
 EEE Minimum number connections at any proc = 27508
 EEE Maximum number connections at any proc = 31433
 EEE Allocated LMNCON = 31433
 EEE
 EEE Average number of neighbors per proc = 5.66666666666667
 EEE Maximum number of neighbors at any proc = 8
 EEE Minimum number of neighbors at any proc = 4
 EEE
 EEE Average number of external elem. per proc = 1627.08333333333
 EEE Maximum number of external elem. per proc = 2098
 EEE Minimum number of external elem. per proc = 1278
 EEE
 EEE Maximum size for local matrix (in Kbyte) = 5664.00000000000
 EEE Maximum size data in matvec (in Kbyte) = 6058.00000000000
 EEE
 EEE Linear Solver Used: BICGSTAB
 EEE Scaling method: Block Jacobi
 EEE Preconditioner: Domain Decomposition
 EEE with overlap type: Standard
 EEE and size of overlap: 0
 EEE and subdomain solver: ILUT
 EEE without RCM reordering
 EEE Residual norm: ||r||2 / ||b||2
 EEE Max. number of iterations: 500
 EEE Tolerance: 1.000000000000000E-006
 EEE ===
 EEE

Figure 4-1 Example for output of parallel computing information

 71

The parallel computing information which is new to original TOUGH2 outputs is written

out near the end of OUTPUT file. Figure 4-1 shows an example of a portion of the output.

The output provides detailed information of the number of processors used, timing for

tasks, code performance for each time step, Newton iteration, and linear iteration,

algorithm used for domain partitioning, and domain decomposition results. At the end of

the list in Figure 4-1, linear solver, preconditioner, and options and parameters selected

for solving the linear equations are presented. This information is very important for

evaluating the parallel code performance.

Some informative output generated by other than master processor is written to fort.36.

The user may get additional information for the program run from this file. Other output

files include SAVE and FOFT_P.xxx. The SAVE contains primary variables for a

continuation run, and has the same format as INCON. The requested time-dependent

data for gridblocks (identified with FOFT), connections (COFT), and source/sinks

(GOFT) are written out to file FOFT_P.xxx. The extension name xxx is a number

indicating the processor number by which the file is written. TOUGH2-MP can generate

multiple time-dependent data output from different processors.

Main output parameters are summarized in alphabetical order in Table 4-3.

 Table 4-3. TOUGH2 Output variables and their definition

DELTEX Time step size, seconds

DG Gas phase density, kg/m3

DL Liquid (aqueous phase) density, kg/m3

DT Time step size, seconds

DW Water (aqueous phase) density, kg/m3

DX1, DX2, etc. Changes in first, second, etc. thermodynamic variable

DX1M, DX2M, DX3M Maximum change in first, second, and third primary variable
In current time step

ELEM Code name of element

ELEM1, ELEM2 Code name of first and second element, respectively, in a

flow connection

ENTHALPY Flowing specific enthalpy for mass sinks/sources, J/kg

FF(GAS), FF(LIQ) Mass fraction of flow in gas and liquid phases, respectively
(mass production wells only)

 72

FLO(BRINE) Total rate of brine flow, kg/s (positive if from ELEM2 into
ELEM1)

FLOF Total rate of fluid flow, kg/s (positive if from ELEM2 into
ELEM1)

FLO(GAS) Total rate of gas flow, kg/s (positive if from ELEM2 into
ELEM1)

FLOH Total rate of heat flow, W (positive if from ELEM2 into
ELEM1)

FLO(LIQ) Total rate of liquid (aqueous phase) flow, kg/s (positive if

from ELEM2 into ELEM1)

GENERATION RATE Sink (> 0) or source (< 0) rate, kg/s (mass), W (heat)

INDEX Internal indexing number of elements, connections,
sinks/sources

ITER Number of Newtonian iterations in current time step

ITERC Total cumulative number of Newtonian iterations in
simulation Run

KCYC Time step counter

KER Index number of equation with largest residual

K(GAS) Gas phase relative permeability

K(LIQ) Liquid (aqueous) phase relative permeability

KON Convergence flag; KON = 2: converged; KON = 1: not
Converged

MAX. RES. Maximum (relative) residual in any of the mass and energy
Balance equations (see Equation B.8)

NER Index number of element (gridblock) with largest residual

P Pressure, Pa

PER.MOD. Permeability modification coefficient

PCAP Capillary pressure, Pa

PSAT Saturated vapor pressure, Pa

P(WB) Flowing bottomhole pressure (production wells on
deliverability only), Pa

RL Relative humidity

SG Gas saturation

SL Liquid saturation

SOURCE Code name of sink/source

ST Simulation time, in seconds

 73

SW Water (aqueous phase) saturation

T Temperature, ˚C

TOTAL TIME Simulation time, in seconds

VEL(GAS) Gas phase pore velocity, m/s (positive if from ELEM2 into
ELEM1)

VEL(LIQ) Liquid (aqueous) phase pore velocity, m/s (positive if from
ELEM2 into ELEM1)

VIS(LIQ) Liquid (aqueous) phase viscosity, Pa-s

X1, X2, etc. First, second, etc. thermodynamic variable (also: water 1,
water 2)

XAIRG Mass fraction of air in gas phase

XAIRL Mass fraction of air in liquid phase

5. USER FEATURES

TOUGH2-MP possesses features from both TOUGH2 V2.0 and V1.4. Some additional

useful functions have also been implemented into the parallel code. The most important

features include:

• Dynamic memory allocation. The program allocates arrays according to the

problem size: total number of grid blocks, connections, materials, and

source/sinks terms. Different from the V2.0 and V1.4 versions, the code does not

need recompilation for different size problems. In addition, the code does not

have limitations on the number of materials.

• Block-by-block permeability modification. Through this function, heterogeneous

flow systems may be specified by providing gridblocks with different

hydrogeologic properties through applying permeability modification (PM)

coefficients to individual gridblocks. To be consistent with the V2.0, the random

numbers are generated by single processor and then distributed to all processors

involved in the computation.

• Initial and boundary conditions. TOUGH2-MP is fully compatible with V2.0

andV1.4 for initial and boundary conditions. The parallel code allows time

 74

dependent first-type (Dirichlet) boundary conditions (see TIMBC input keyword).

Internally, it always uses large-volume approach for handling the first type

boundary conditions.

• Flow in fractured media. TOUGH2-MP retains the full functions of TOUGH2 for

a flexible description of flow in fractured media through either discrete fracture,

dual-porosity, dual-permeability, or MINC approaches. In addition, the parallel

code allows several schemes of fracture-matrix interface area reduction for F-M

local connection and mobility weighting, such as, using active fracture model.

These schemes are invoked through setting a negative integer for parameter ISOT.

• Efficient computing schemes. In addition to the parallel computing approach,

TOUGH2-MP also adopts very efficient algorithms for index searching and other

computations. In the sequential version, index searching is a time-consuming task.

In the parallel version, index searching can be done in seconds even for multi-

million gridblock problems.

• Other features. TOUGH2-MP allows more time steps at each simulation run

(TOUGH2 limits to 9999), can control time step-size reduction or increase

depending on rate of convergence, allows gridblock names with 5 or 8 characters,

allows generating multi-million gridblocks for Cartesian X-Y-Z mesh maker, and

includes more relative permeability and capillary functions.

6. SAMPLE PROBLEMS

Several sample problems are included in the TOUGH2-MP distribution package. Users

may use these examples as benchmarks for proper code installation and for testing the

code’s performance on their computers. In addition, the input data files can also be used

as templates to facilitate preparation of input data for new simulations. Actually, any

input data files for the TOUGH2 V2.0 and V1.4 can be used as TOUGH2-MP input

without change (need renaming the input file name to “INFILE”). The input and output

files for the sample problems can also be obtained from following website:

http://www.tough2.com/examples.html.

 75

6.1 Unsaturated Flow Simulation

Successfully running this small test problem indicates correct installation of TOUGH2-

MP. This example also verifies TOUGH2-MP for using a different number of processors.

The parallel code running on a different number of processors and the sequential version

of the code should yield results within the acceptance criteria. The problem size is too

small to demonstrate speed-up of parallel simulation.

This problem concerns one-dimensional vertical flow through a single vertical column of

highly heterogeneous dual-permeability fractured medium. The column is abstracted

from a three-dimensional Yucca Mountain site-scale model. The computational mesh

consists of 136 elements and 205 connections. The bottom boundary is treated as a

Dirichlet-type boundary. Constant liquid saturation is provided at the bottom boundary by

specifying a large-volume for the bottom gridblock. A source term with a rate of

0.4765E-04 kg/s is introduced to the second fracture element from the top to provide a

constant water infiltration. Simulations are run using 2, 4, and 8 processors by TOUGH2-

MP. The EOS9 module is used for the test problem simulation.

Table 6-1 Comparison of simulated liquid saturation by TOUGH2-MP and

TOUGH2 Version 1.4 at the time of 1000 year for randomly selected 10 gridblocks
Simulated liquid saturation

By TOUGH2-MP

Elements By TOUGH2

V1.4 2 processors 4 processors 8 processors

Faa61 6.2713E-02 6.2713E-02 6.2713E-02 6.2713E-02

Maa61 5.2041E-01 5.1926E-01 5.1909E-01 5.1899E-01

Fja61 8.9186E-02 8.9186E-02 8.9186E-02 8.9186E-02

Mja61 9.9892E-01 9.9892E-01 9.9892E-01 9.9892E-01

Fpa61 3.4302E-02 3.4286E-02 3.4286E-02 3.4284E-02

Mpa61 5.3516E-01 5.3502E-01 5.3502E-01 5.3500E-01

Fua61 8.1080E-02 8.1024E-02 8.1014E-02 8.1008E-02

Mua61 6.5629E-01 6.5571E-01 6.5562E-01 6.5556E-01

F(a61 3.1185E-01 3.1107E-01 3.1094E-01 3.1087E-01

M(a61 9.8998E-01 9.8998E-01 9.8998E-01 9.8998E-01

Table 6-1 shows the excerpts of the comparison of simulated saturation by TOUGH2-MP

and TOUGH2 at 10 randomly selected gridblocks. Figure 6-1 shows the comparison of

simulated pressure in fractured continuum. The comparisons demonstrate that simulation

results from the two codes match very well.

 76

Simulated Pressure in Fracture Continuum at Time 1000 Year

750

850

950

1050

1150

1250

1350

1450

0 20000 40000 60000 80000 100000

Pressure (PA)

E
le

v
a
ti

o
n

 (
m

)

By TOUGH2_MP V2.0

By TOUGH2 Ver 1.4

Figure 6-1. Comparison of simulated pressure in fracture continuum by TOUGH2-

MP and TOUGH2 Version 1.4. The figure shows simulation result from 2

processors. Simulation results by different number of processors are almost

identical.

6.2 Contaminant Transport Simulation

This example is adopted from a model for investigation of flow focusing and discrete

flow paths in the Topopah Spring welded (TSw) hydrogeologic unit at the Yucca

Mountain site (Bodvarsson et al., 2003). In this model, tracer transport is simulated

through the fracture network to demonstrate degree of preferential flow. It is designed to

test the T2R3D module for modeling of contaminant transport in a fracture continuum.

The two-dimensional vertical cross section for this problem has an upper boundary at the

bottom of the Paintbrush Tuff nonwelded (PTn) unit and a lower boundary at the

proposed repository zone. The cross section is 100 m wide and 150 m high, and is

discretized in a uniform 2-D grid of ∆x = 0.25 m and ∆z = 0.5, resulting in 120,000

 77

gridblocks and 239,300 connections. The 150 m vertical extent of the model corresponds

to the average distance from the top of the TSw to the top of the proposed repository

horizon over the repository area.

The flow field used for contaminant transport simulation is given by file flow9.dat, which

was generated by flow model (EOS9 module with option MOP17=1) with following

specification: Uniform percolation flux (5mm/year) boundary conditions are prescribed

at the upper boundary. The two side boundaries are treated as no-flow boundaries; the

bottom boundary allows gravitational drainage out of the model. The fractured rock is

modeled using a randomly distributed permeability field to represent the complex

fracture distributions. Fracture permeability is prescribed stochastically, based on

measured air permeability data. The steady state results of the flow system are used as

input for contaminant transport simulation. Detailed discussion of the flow simulation

was presented in Bodvarsson et al. (2003).

A conservative, nonsorbing tracer with a molecular diffusion coefficient of 3.2x10-11 m2/s

at constant concentration with a mass fraction of 0.1 is prescribed at the top boundary.

Under steady-state flow condition, the tracer is transported into the model domain from

the top by advection and diffusion. Simulation of the contaminant transport processes is

relatively easy, because the problem involves only a linear process. The simulations can

be completed in a few seconds. We have run the model with 2, 4, and 8 CPUs and

noticed the code performs extremely well in speedup (linear or super-linear speedup can

be seen).

Figure 6-2 shows the simulation results of mass fraction distribution by TOUGH2-MP at

time 1 year, which is identical to the results from T2R3D (DC) Version 1.4.

 78

 X (m)

D
e

p
th

(m
)

0 25 50 75 100
-150

-140

-130

-120

-110

-100

-90

-80

-70

-60

-50

-40

-30

-20

-10

0

0.1

0.095

0.09

0.085

0.08

0.075

0.07

0.065

0.06

0.055
0.05

0.045

0.04

0.035

0.03

0.025

0.02

0.015

Mass Fraction

At time= 1 year

Mass Fraction Distribution, Computed by TOUGH2-MP

Figure 6-2. Simulated mass fraction distribution after 1 year for TOUGH2-MP

sample problem 2.

6.3 Investigation of CO2 Convection Mixing

This sample problem was modified from a previously published paper on modeling

studies of CO2 sequestration in saline aquifers (Zhang et al., 2007). The example shows

performance of TOUGH2-MP (ECO2N module) on large-scale simulations, which are

too large to be run with the sequential version TOUGH2 code.

When CO2 is injected into a saline formation, it partially displaces the resident brine, and

partially dissolves in it, while some water also dissolves (evaporates) into the flowing

CO2 stream. Under most subsurface temperature and pressure conditions, CO2 is buoyant

(less dense), compared to water (or brine), and the injected CO2 will move upward

towards the top of the permeable interval. Eventually, the carbon dioxide is distributed

 79

among mobile layers beneath the caprock. When CO2 dissolves in brine, the density of

the aqueous phase will increase by a small amount of approximately 1 %. Although

small, the density increase is sufficient to trigger convection flow, provided there is

"sufficient" vertical permeability. This example presents the simulation of the convection

processes.

CO2 convection starts slowly and within a small space scale, which over time grows to

larger-scale flows. We are using a three-dimensional high-resolution model to begin a

systematic evaluation of the role of brine convection in enhancing CO2 dissolution. Our

initial studies used a cube of 1m×1m×1m size to investigate the onset and early stage of

CO2 convection. Fine gridding (∆x = 1 cm) is used for representing the interplay between

molecular diffusion and aqueous phase convection induced by the small density change

due to CO2 dissolution, resulting in 100×100×100 = 1,000,000 gridblocks. With an

additional 10,000 top boundary gridblocks, the model includes 1,010,000 gridblocks and

2,999,800 connections between them.

Model initial and boundary conditions are shown in Figure 6-3. Two-phase conditions

with a free CO2-rich phase (gas saturation Sg = 0.1 %) are maintained at the upper

boundary. Conditions of no fluid flow at the upper boundary are enforced by specifying a

very small permeability in the boundary domain (10-50 m2). This results in mass transport

across the top boundary occurring by molecular diffusion only. The model domain is

assigned an isotropic permeability of 10-11 m2. Permeabilities for all gridblocks are

modified by multiplying the assigned permeability with a random number in the range

0.99-1.01. This small modification is applied to trigger the onset of CO2 convection.

The flow domain is initialized with a constant pressure, but because of the small

compressibility of the aqueous phase, hydrostatic pressure equilibrium is established

virtually instantaneously. CO2 then diffuses into the initially CO2-free aqueous phase

below, causing brine density to increase and eventually triggering downward advection.

The unstable nature of the advection (denser fluid above less-dense fluid) gives rise to

fingering, see Figure 6-4. The figure shows CO2 mass fractions at a time of 20.24 days at

 80

y=0.505 m, which represents a vertical cross-section located near the center of the cube,

and it demonstrates convective fingering in brine with 12.5% salinity.

P=100 bar, T=450C, Sg=0.1%, 12.5% NaCl

1m

1m

g

P=100 bar, T=450C

XCO2=0

12.5% NaCl

No flow

Figure 6-3. Three-dimensional domain for simulating brine convection
induced by CO2 dissolution and associated increase in aqueous phase
density. Initial and boundary conditions are also shown.

Simulations were run on a Linux cluster equipped with 356 nodes using infiniBand

switch connection, and each node consists of 2 Opteron 2.2 GHz CPUs. For testing the

parallel code performance, the model was run using either 2, 4, 8, 16, 32, 64, 128, or 256

processors for the same simulation time period. Figure 6-5 shows the speedups obtained

for different numbers of processors and for different parts of the simulation. By

increasing the number of processors, the total execution time was reduced from 79,160

seconds using two processors to 514 seconds using 256 processors. The parallel code

demonstrates much better performance than ideal linear speedup. The total execution

time is reduced to less than half when doubling the processor numbers when using 64 or

less processors for this problem. Figure 6-5 indicates that the super-linear effect is

introduced by the linear equation solution. It is interesting to note that this large-scale

 81

problem can be run on two processors, because of the huge memory available for each

node (2 CPUs share 6 GB memory).

X (m)

Z
(m

)

0 0.25 0.5 0.75 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.045
0.04
0.035

0.03
0.025

0.02
0.015
0.01

0.005

y=0.505m, t=0.174914e7(s), salt=12.5%, 3D

CO2 mass fraction

Figure 6-4 CO2 mass fraction distribution along cross-section y=0.505 m at time

20.2 days. The brine has 12.5 weight-% NaCl.

0

50

100

150

200

250

300

350

400

0 50 100 150 200 250 300 350 400
Processor number

S
p

e
e
d

u
p

Speedup for solving linear equations

Speedup for updating EOS and assembling Jacobian matrix

Total speedup

Ideal speedup

Figure 6-5. Speedups for the different parts of the parallel simulations.

6.4 Large-scale two-phase water and hydrogen flow simulation

One of the major problems in representing gas migration in a repository for radioactive

waste is to model simultaneously all gas sources and the transfer pathways constituted by

the network of undergrounds drift. The gas sources include significant quantities of

hydrogen generated by the corrosion of metal components. In 2006, the French National

Agency for Radioactive Waste Management (ANDRA) launched a multi-phase flow

 82

simulation benchmark exercise, named Couplex-Gaz, for modeling such a two-phase

flow system (see http://www.andra.fr/interne.php3?id_article=913&id_rubrique=76).

This example is adopted from the test case2 of the exercise completed by the first author

of this manual and AF-Colenco Ltd, Switzerland (Croisé and Zhang, 2008).

The model represents a fraction of a repository with vitrified waste consisting of two

rows of 30 waste cells. The three dimensional definition of the domain is shown in

Figures 6-6 to 6-8. The vertical extension is limited to the thickness of a single indurate

clay formation (Callovo-Oxfordian). The extensions in both other directions are

representative of the distances between disposal cells. Detailed description of the model

and model parameters are given in an ANDRA’s report at:

http://www.andra.fr/IMG/pdf/test_cases2.pdf.

Figure 6-6 Representation of the domain in the horizontal plane XY (from Andra,

2006). Due to symmetry along X axis, only half of the waste cells are simulated in the

model.

 83

Figure 6-7 Model domain in the vertical plane XZ (from Andra, 2006).

Figure 6-8 Model domain in the vertical planeYZ (from ANDRA, 2006).

Gas is generated by each disposal cell. Gas source term is imposed on the external

surface of the cylinder that represents schematically the cell. The materials to be taken

into account in that simulation include the backfill of the drift, the bentonite of the drift

seals and the Callovo-Oxfordian formation. The cell is constituted of a material

impermeable to both water and gas. Table 6-3 provides physical parameters for the

materials of the model.

Based on the definition of the three-dimensional geometry (Table 6-2) for the domain, a

3D mesh representing model domain was generated using WinGridder Ver 4.0 (Pan

2008). Figures 6-9 to 6-11 show the cross-section of the 3D mesh along different planes.

The mesh consists of 62,401 gridblocks and 184,260 connections.

 84

Table 6-2 Size of items in the calculation domain (From ANDRA, 2006)

Figure 6-9 Mesh discretization along XY plan (zoom on the main drift and the for

adjacent emplacement cells).

 85

Figure 6-10 Mesh discretization along XZ plane. Upper: the whole plane; lower:

refined mesh around waste cells.

 86

Figure 6-11 Mesh discretization along YZ plane.

Boundary conditions of the model include constant water pressure at top (4.21e06 Pa),

bottom (5.51e06 Pa), and mouth of the main drift (4.85e06 Pa). Four sides of the domain

are no-flow boundaries. The gas generation rate is 100 mol/year/cell during the first

4,500 years, 15 mol/year/cell during 4,500-20,000 years, and 1 mol/year/cell during

20,000-50,000 years. No gas is generated after 50,000 years. The model has an initial

water saturation equal to 1.0 in the Callovo-Oxfordian formation and equal to 0.7 in the

other media. The initial pressure is distributed linearly in accordance with the pressure

gradient between the roof and the wall of the Callovo-Oxfordian formation. In partially-

saturated materials, the initial gas pressure is equal to 1 atmosphere. The water pressure is

deduced from the gas pressure and the saturation pressure by applying Van Genuchten

models associated with each material. For more information on the model specifications

the user may refer to the ANDRA report.

 87

Table 6-3 Physical parameters for the rocks (From ANDRA report)

Because the model involves water and hydrogen as the two components and two phases,

we select EOS5 for the simulation. The model was considered as isothermal case with

constant temperature 30oC. To facilitate simulation run, diffusion effect is neglected for

the first 5,000-year simulation. The model was first run to steady-state with specified

constant pressure at the domain top, bottom, and main drift mouth. The hydrostatic

equilibrium is obtained from the steady-state solution. The initial condition for further

gas generation simulations is obtained by incorporating the condition of 0.7 water

saturation for some materials as requested into the hydrostatic equilibrium condition. For

convenience of the users, we provide all input files needed for gas simulation, including

the initial condition file INCON, source/sink file GENER, mesh file MESH, and main

input file INFILE. Users may directly use these files for the two phase flow simulations.

Figure 6-12 shows gas pressure at the repository level at time 1000 years and 2000 years.

Figure 6-13 and 6-14 show the corresponding simulated water pressure and gas saturation.

Figure 6-15and Figure 6-16 show gas pressure and gas saturation changes with time at

different locations.

 88

Figure 6-12 Simulated gas pressure at the repository level at times of 1,000 years

and 2,000 years.

Figure 6-13 Simulated water pressure at the repository level at times of 1,000 years

and 2,000 years.

Figure 6-14 Simulated gas saturation at the repository level at times of 1,000 years

and 2,000 years.

 89

Pressure Change with Time

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

7.00E+06

8.00E+06

0.1 1 10 100 1000 10000 100000 1000000

Time (Years)

P
re

s
s
u

re
 (

P
a
)

At (50,50,65)

At (375,50,65)

At (390,30,65)

At (147,30,65)

At (250,50,65)

At (196,50,70)

At (150,50,65)

At (380,35,65)

At (25,50,65)

Figure 6-15. Simulated gas (or water under single phase conditions) pressure

changes with time at different locations.

Gas Saturation Change with Time

0.0

0.2

0.4

0.6

0.8

1.0

0.1 1 10 100 1000 10000 100000

Time (Years)

G
a
s
 S

a
tu

ra
ti

o
n

At (50,50,65)

At (375,50,65)

At (390,30,65)

At (147,30,65)

At (250,50,65)

At (196,50,70)

At (150,50,65)

At (380,35,65)

At (25,50,65)

Figure 6-16. Simulated gas saturation changes with time at different locations

 90

This sample problem provides an example for typical 3D models. The example could be

a good template for large-scale field problem simulations. Users may use the provided

simulation results in this manual to confirm the correctness of parallel simulation on their

computers. This example may also be good for testing the parallel performance of multi-

CPU computers. Users can look into the details of the model through the input files to

learn more details for complex model setup and simulation with the parallel code.

7. CONCLUDING REMARKS

A massively parallel simulator, named TOUGH2-MP, for isothermal and nonisothermal

flows of multicomponent, multiphase fluids in one, two, and three-dimensional porous

and fractured media has been developed. The parallel simulator solves large, sparse linear

systems arising from discretization of the partial differential equations for mass and

energy balance. A domain decomposition approach is adopted for multiphase flow

simulations with coarse-granularity parallel computation. This approach partitions a

simulation domain into a number of smaller subdomains. The full model domain,

consisting of partitioned subdomains, is still simulated simultaneously by using multiple

processes/processors. Each processor is dedicated to the following tasks for the

partitioned subdomain: updating thermophysical properties, assembling mass- and

energy-balance equations, solving linear equation systems, and performing various other

local computations. The linearized equation systems are solved in parallel with a parallel

linear solver, using an efficient inter-processor communication scheme.

TOUGH2-MP was developed based on the sequential TOUGH2 V2.0 and V1.4 codes. It

was written in Fortran 90 with MPI for parallel implementation. Because the parallel

simulator was developed from an existing mature code, it inherits not only simulation

functions from the original TOUGH2 code, but also all other features, including

input/output format, error handling, and improvements for code stability. These features

provide robustness of the parallel code and ease of use to the TOUGH2 community.

TOUGH2-MP is designed to use identical input data, mesh and output files as TOUGH2

V2.0.

 91

TOUGH2-MP has demonstrated excellent speedup and good scalability. It is more

efficient than its sequential counterpart, especially for larger problems. The code provides

a powerful tool for tackling larger-scale and more complex problems than can be handled

currently by sequential codes. The new simulator enhances modeling capacity in terms of

both model size and simulation time by 1-3 orders of the magnitude. It allows for much

larger problems to be solved by multiple-process simulation even with a single-processor.

The code can make full use of the computing resources of multi-core CPUs. The growing

availability of multi-core CPUs will make parallel processing on PCs far more attractive

in reservoir simulation practice.

ACKNOWLEDGES

We thank Nicholaus Halecky for reviewing the manuscript. The prototype of TOUGH2-MP

was developed during 1999-2000 through an LDRD project entitled “Development of the

high performance TOUGH2 codes”. Erik Elmroth and Chris Ding made important

contributions to the early phase of the prototype development. The code has been

redeveloped, improved, and augmented with more modules while applied to many DOE

sponsored projects, especially the Yucca Mountain project sponsored by DOE Civil

Radioactive Waste Management program. These supports were provided under Contract

No. DE-AC02-05CH11231 with the U.S. Department of Energy. The authors would like

to thank their colleagues at LBNL for many discussions and helpful suggestions. Beta-

testing and evaluation of the code were performed by Robert Podgorney (Idaho National

Engineering and Environmental Laboratory), Hajime Yamamoto (Taisei, Japan), Jean

Croisé and Mayer Gerhard (AF-Colenco Ltd, Switzerland), Chunmiao Zheng and Song

Chen (University of Alabama), Ljubinko Miljkovic (Stanford University), David J. Noy

(British Geological Survey), Rainer Senger (Intera, Inc), and others. We thank them for

their reports on the code performance and suggestions for improvements. Specially, we

are indebted to the late Dr. Stephen White (Industrial Research Limited, New Zealand),

who was the first user of this code outside LBNL. He provided a binary searching

subroutine which dramatically enhanced the TOUGH2 index searching speed. Thanks

also go to ANDRA (French National Radioactive Waste Management Agency) and AF-

 92

Colenco Ltd, Switzerland for permission to include Couplex-gas Test case 2 in this report

as a sample problem.

 93

REFERENCES

 Andra, 2006: Couplex-gaz benchmark experiment: http://www.andra.fr/IMG/pdf/test_cases2.pdf

Bodvarsson, G.S., Y.S. Wu, K. Zhang, 2003, Development of Discrete Flow Paths in

Unsaturated Fractures at Yucca Mountain, Journal Of Contaminant Hydrology, 62-

63, 23-42.

Corey, A.T., The Interrelation Between Gas and Oil Relative Permeabilities, Producers

Monthly, 38-41, November 1954. NNA.19900720.0036

Croisé, J., and K. Zhang, Exercice Couplex-Gaz: Cas 2a : déchets vitrifies, Report

1101/004, AF-Colenco Ltd, Switzerland, 2008.

Elmroth, E., C. Ding, and Y. S. Wu, High Performance Computations for Large-Scale

Simulations of Subsurface Multiphase Fluid and Heat Flow, The Journal of

Supercomputing, 18(3), pp. 233-256, 2001.

Fatt, I. and W.A. Klikoff. Effect of Fractional Wettability on Multiphase Flow Through

Porous Media, AIME Transactions, 216, 246, 1959. NNA.19900917.0129

Karypsis, G. and V. Kumar, METIS. A Software Package for Partitioning Unstructured

Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of Sparse

Matrices, V4.0. Technical Report, Department of Computer Science, University of

Minnesota, 1998.

Leverett, M.C., Capillary Behavior in Porous Solids, Trans. Soc. Pet. Eng. AIME, 142,

152-169, 1941.

Liu, H. H., C. Doughty, and G. S. Bodvarsson, An Active Fracture Model For Unsaturated

Flow And Transport In Fractured Rocks, Water Resources Research, 34, 2633–2646,

1998.

Message Passing Forum, A Message-Passing Interface Standard, International Journal of

Supercomputing Applications and High performance Computing, 8(3-4), 1994.

 94

Milly, P.C.D., Moisture and Heat Transport in Hysteretic, Inhomogeneous Porous Media:

A Matric-Head Based Formulation and a Numerical Model, Water Resour. Res.,

Vol. 18, No. 3, pp. 489 - 498, 1982.

Mualem, Y., A New Model for Predicting the Hydraulic Conductivity of Unsaturated

Porous Media, Water Resour. Res., Vol. 12(3), pp. 513 - 522, 1976.

NNA.19881228.0005

Narasimhan, T. N. and P. A. Witherspoon, An Integrated Finite Difference Method for

Analyzing Fluid Flow in Porous Media, Water Resources Research, 12(1), pp. 57-64,

1976.

Narasimhan, T.N., P.A. Witherspoon and A.L. Edwards. Numerical Model for Saturated-

Unsaturated Flow in Deformable Porous Media, Part 2: The Algorithm, Water

Resour. Res., 14 (2), 255-261, 1978.

Pickens, J.F., R.W. Gillham and D.R. Cameron. Finite Element Analysis of the Transport

of Water and Solutes in Tile-Drained Soils, J. of Hydrology, 40, 243-264, 1979.

Pruess, K., GMINC – A Mesh Generator for Flow Simulations in Fractured Reservoirs,

Report LBL-15227, Berkeley, California: Lawrence Berkeley National Laboratory,

1983.

Pruess, K., TOUGH User’s Guide, Nuclear Regulatory Commission Report NUREG/CR-

4645; also Lawrence Berkeley Laboratory Report LBL-20700, 1987.

Pruess, K., TOUGH2 – A general-purpose numerical simulator for multiphase fluid and

heart flow, Lawrence Berkeley Laboratory Report LBNL-29400, Berkeley, CA,

1991.

Pruess, K. The TOUGH Codes—A Family of Simulation Tools for Multiphase Flow and
Transport Processes in Permeable Media, Vadose Zone J., Vol. 3, pp. 738 - 746,
2004.

Pruess, K., and T. N. Narasimhan, A Practical Method for Modeling Fluid and Heat Flow

in Fractured Porous Media, Soc. Pet. Eng. J., 25, pp. 14-26, 1985.

 95

Pruess, K, C. Oldenburg, and G. Moridis, TOUGH2 User’s Guide, V2.0. Lawrence

Berkeley National Laboratory Report LBNL-43134, Berkeley, CA, 1999.

Pruess, K., and Y. Tsang, 1994, Thermal Modeling for a Potential High-Level Nuclear

Waste Repository at Yucca Mountain, Nevada, Lawrence Berkeley Laboratory

Report, LBL-35381, UC-600, Lawrence Berkeley National Laboratories, Berkeley,

CA

Senger, R., K. Zhang, J. Avis, P. Marschall, Three-dimensional modeling of gas migration

in a deep low/intermediate level waste repository (Switzerland), Abs, Computational

Methods in Water Resources XVII International Conference, San Francisco, CA,

2008.

Tuminaro, R. S., M. Heroux, S. A. Hutchinson, and J. N. Shadid, Official Aztec user’s

guide, Ver 2.1, Massively Parallel Computing Research Laboratory, Sandia National

Laboratories, Albuquerque, NM, 1999.

Udell, K.S. and J.S. Fitch. Heat and Mass Transfer in Capillary Porous Media

Considering Evaporation, Condensation, and Non-Condensible Gas Effects, paper

presented at 23rd ASME/AIChE National Heat Transfer Conference, Denver, CO,

1985.

Van Genuchten, M.Th. A Closed-Form Equation for Predicting the Hydraulic

Conductivity of Unsaturated Soils, Soil Sci. Soc. , Vol. 44, pp. 892 - 898, 1980.

NNA.19911009.0008

Verma, A.K., K. Pruess, C.F. Tsang and P.A. Witherspoon. A Study of Two-Phase

Concurrent Flow of Steam and Water in an Unconsolidated Porous Medium, Proc.

23rd National Heat Transfer Conference, Am. Society of Mechanical Engineers,

Denver, CO, 135–143, 1985. NNA.19890713.0198

Wu, Y. S., USERS MANUAL (UM) for T2R3D, Version 1.4., STN: 10006.14.00, Research

Report, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley,

CA, 1999.

 96

Wu, Y. S., USERS MANUAL (UM) for TOUGH2, Version 1.4, STN:10007-1.4-01,

Research Report, Earth Sciences Division, Lawrence Berkeley National Laboratory,

Berkeley, CA, 2000.

Wu, Y. S., C. F. Ahlers, P. Fraser, A. Simmons, and K. Pruess, Software Qualification of

Selected TOUGH2 Modules, Research Report, Earth Sciences Division, Lawrence

Berkeley National Laboratory, LBL-39490, UC-800, October, 1996.

Wu, Y. S., C. Haukwa, and S. Mukhopadyay, TOUGH2 V1.4 and T2R3D V1.4:

Verification and Validation Report and User's Manual, Rev 00, Lawrence Berkeley

National Laboratory, Berkeley, CA, 1999.

Wu, Y. S., K. Zhang, C. Ding, K, Pruess, and G. S. Bodvarsson, An Efficient Parallel-

Computing Method for Modeling Nonisothermal Multiphase Flow and

Multicomponent Transport in Porous and Fractured Media, LBNL-47937, Advances

in Water Resources, Vol. 25, pp.243-261, 2002

Yamamoto, H., K. Zhang, K. Karasaki, and A. Marui, 2007, Impact of large-scale

geologic CO2 storage on regional groundwater systems –Numerical simulation

using parallelized code, Abs J253-008, Japan Geosciences Union Meeting 2007.

Zhang, K., USERS MANUAL for TOUGH2-MP, Version 1.0., STN: 10007.1.0.00, Research

Report, Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley,

CA, 2003.

Zhang K., C. Doughty, YS Wu, and K. Pruess, 2007, Efficient Parallel Simulation of CO2

Geologic Sequestration in Saline Aquifers, Paper SPE 106026, Proceedings of the

2007 SPE Reservoir Simulation Symposium, Houston, Texas.

Zhang, K., G. J. Moridis, Y. S. Wu, and K. Pruess, A domain decomposition approach for

large-scale simulations of flow processes in hydrate-bearing geologic media,

Proceedings of the 6th International Conference on Gas Hydrates (ICGH 2008),

Vancouver, British Columbia, CANADA, July 6-10, 2008

Zhang K. and YS Wu, 2006, Enhancing Scalability and Efficiency of the TOUGH2_MP

 97

for Linux Clusters, Proceedings of TOUGH symposium 2006, Berkeley, CA

Zhang, K., Y. S. Wu, and G. S. Bodvarsson, Massively Parallel Computing Simulation of

Fluid Flow in the Unsaturated Zone of Yucca Mountain, Nevada, LBNL-48883,

Journal of Contaminant Hydrology, pp.381-399, 2003a.

Zhang, K, Y. S. Wu, C. Ding, K. Pruess, and E. Elmroth, Parallel Computing Techniques

for Large-Scale Reservoir Simulation of Multi-Component and Multiphase Fluid

Flow, Paper SPE 66343, Proceedings of the 2001 SPE Reservoir Simulation

Symposium, Houston, Texas, 2001.

Zhang, K., Y.S. Wu, C. Ding, and K. Pruess, 2003, TOUGH2_MP: A parallel Version of

TOUGH2, Proceedings of TOUGH symposium 2003, Berkeley, CA.

Zhang, K., Y. S. Wu, and L. Pan, Temporal Damping Effect of the Yucca Mountain

Fractured Unsaturated Rock on Transient Infiltration Pulses, LBNL-57539, Journal

of Hydrology, Vol. 327, pp.235-248, 2006.

Zhang, K., H. Yamamoto, and K. Pruess, TMVOC-MP: A Parallel Numerical Simulator

for Three-Phase Non-isothermal Flows of Multicomponent Hydrocarbon Mixtures

in Porous/Fractured Media, Report LBNL-63827, Lawrence Berkeley National

Laboratory, Berkeley, CA, 2008

 98

APPENDIX A. RUNNING TOUGH2-MP ON MULTIPLE-
CORE PCs

A.1 INSTALLING MPICH2

1. Main MPICH homepage:

http://www-unix.mcs.anl.gov/mpi/

2. Download the Win32IA32 version of MPICH2 from:

http://www-unix.mcs.anl.gov/mpi/mpich2/

3. Run the executable, mpich2-1.0.3-1-win32-ia32.msi (or a more recent version).

Most likely it will result in the following error:

If you follow the link to download the .NET Framework it will download version 2.0,

which is not compatible with MPICH2. To download version1.use this link:

http://www.microsoft.com/downloads/details.aspx?FamilyId=262D25E3-F589-4842-

8157-034D1E7CF3A3&displaylang=en

4. Install the .NET Framework program

5. Install the MPICH2 executable. Write down the passphrase for future reference.

The passphrase must be consistent across a network.

6. Add the MPICH2 path to Windows:

A. Right click “My Computer” and pick properties

B. Select the Advanced Tab

C. Select the Environment Variables button

D. Highlight the path variable under System Variables and click edit. Add

“C:\MPICH2\bin” to the end of the list, make sure to separate this from the

prior path with a semicolon.

7. Run the example executable to ensure correct installation.

mpiexec –n 2 cpi.exe

 99

8. If installed on a dual processor machine, verify that both processors are being

utilized by examining “CPU Usage History” in the Windows Task Manager.

9. The first time each session mpiexec is run it will ask for username and password.

To prevent being asked for this in the future, this information can be encrypted

into the Windows registry by running:

mpiexec –register

The username and password are your Windows logon information.

A.2. Running TOUGH2-MP

• Make sure that “C:\mpich2\bin” is in your window working path.

• Copy input file(s) to the working directory. The format of input files is the same

as the input files for standard version TOUGH2. Different from the original

TOUGH2, the main input file must be named “INFILE” (case sensitive). The

parallel version: (a) does not support simplified mesh format; (b) does not support

inactive elements; large volume elements must be used to replace inactive

elements; (c) requires to remove previously saved MESHA and MESHB files if

MESH was changed.

• An optional input file “PARAL.prm” may be needed for extremely large models

(more than 0.5 million grid blocks), provide your own modeling domain

partitioning, or you like to try different Aztec solver options. A template of this

file is included in the TOUGH2-MP distribution package.

• Change to the directory where you executable and input data are located and type

“mpiexec –n X t2eos3_mp”. The executable can be in a different directory and

run through specifying its path. X is the number of processes (i.e., the number of

subdomains into which the flow systems is partitioned) and t2eos3_mp is the

name of the executable. The first time you run in a given logon session you will

be asked for your userid and password. These are you Windows XP logon and

password. Users are encouraged to experiment with specifying more processes

than the number of processors that are available.

 100

APPENDIX B. RELATIVE PERMEABILITY FUNCTIONS

IRP = 1 Linear functions

 krl increases linearly from 0 to 1 in the range

 RP(1) ≤ Sl ≤ RP(3);

 krg increases linearly from 0 to 1 in the range

 RP(2) ≤ Sg ≤ RP(4)

 Restrictions: RP(3) > RP(1); RP(4) > RP(2).

IRP = 2 krl = Sl**RP(1)

 krg = 1.

IRP = 3 Corey's curves (1954)

 4

rl Ŝk =

 krg ==== 1 −−−− ˆ S (((())))2
1 −−−− ˆ S

2(((())))
 where ˆ S ==== Sl −−−− Slr(((()))) 1 −−−− Slr −−−− Sgr(((())))

 with Slr = RP(1); Sgr = RP(2)

 Restrictions: RP(1) + RP(2) < 1

IRP = 4 Grant's curves

 krl ==== ˆ S
4

 krg ==== 1 −−−− krl

 where ˆ S ==== Sl −−−− Slr(((()))) 1 −−−− Slr −−−− Sgr(((())))

 with Slr = RP(1); Sgr = RP(2)

 Restrictions: RP(1) + RP(2) < 1

IRP = 5 All phases perfectly mobile

 krg = krl = 1 for all saturations; no parameters

IRP = 6 Functions of Fatt and Klikoff (1959)

 101

 krl = S
*()3

 krg = 1 − S
*()3

 where S
* = Sl − Slr() 1 − Slr()

 with Slr = RP(1).

 Restriction: RP(1) < 1.

IRP = 7 van Genuchten-Mualem model (Mualem, 1976; van Genuchten, 1980)

 (){ }

≥
<−−=

λλ

lsl

lsl

2
1**

rl

SSif1

SSif]S[11S
k

Gas relative permeability can be chosen as one of the following three

forms, the second of which is due to Corey (1954)

() ()
()

>=
λ−

λ=γ

−−

=>>−−

===−

=

γ
γ+

0)5(RPand0Sif,
1

withS1S1

0)5(RPand,0)4(RP,0SifŜ1Ŝ1

0)5(RP)4(RPand,0Sifk1

k

gr

2
2

gr

2
2

grrl

rg

L

 subject to the restriction 0 ≤≤≤≤ k rl, krg ≤≤≤≤ 1

 Here, S
* = Sl − Slr() Sls − Slr(), ˆ S ==== Sl −−−− Slr(((()))) 1 −−−− Slr −−−− Sgr(((())))

Parameters: RP(1) = λ

 RP(2) = Slr

 RP(3) = Sls

 RP(4) = Sgr

RP(5) = switching parameter

 Notation: Parameter λ is m in van Genuchten’s notation, with m = 1 - 1/n;

 parameter n is often written as β.

IRP = 8 Function of Verma et al. (1985)

 102

 krl ==== ˆ S
3

 krg ==== A ++++ B ˆ S ++++ C ˆ S
2

 where ˆ S ==== Sl −−−− Slr(((()))) Sls −−−− Slr(((())))

 Parameters as measured by Verma et al. (1985) for steam-water flow in an

 unconsolidated sand:

Slr = RP(1) = 0.2

Sls = RP(2) = 0.895

A = RP(3) = 1.259

B = RP(4) = -1.7615

C = RP(5) = 0.5089

IRP = 9, 10 ECM function (Pruess and Tsang, 1994)

These two options are the original effective continuum model (ECM),

which use a threshold liquid saturation concept, defined as

fm

m
thS

φ+φ
φ=

where both φm
 and φ f

 are void fractions or porosities for matrix and

fractures respectively, defined in terms of the bulk volume of formation.

The only difference between IRP = 9 and = 10 is that option of IRP = 9

handles isotropic permeability cases and IRP = 10 handles anisotropic

permeability scenarios. In general, the two ECM relative permeability

functions need (1) matrix continuum and fracture continuum permeability

and (2) a special capillary function (defined in ICP = 8 in Appendix VI). It

is assumed that PER(i) and PERF(i), input in ROCKS, are absolute

continuum permeability of matrix and fractures (i = 1, 2, 3), respectively,

along the three principal axes or directions, as defined in CONNE. See

Table B.1 for parameter definition

 103

Table B.1. Definition of parameters for IRP=9 and 10 with ECM relative

permeability functions.

IRP= 9 for ECM option in isotropic fracture systems.

IRP= 10 for ECM option in anisotropic fracture systems.

RP(1)= M of van Genuchten’s function for matrix.

RP(2)= Slr
 residual liquid saturation in matrix.

RP(3)= M of van Genuchten’s function for fractures.

RP(4)= Slr
 residual liquid saturation in fractures.

RP(5)= kf

km

 ratio of fracture and matrix permeabilities, used only

for isotropic properties of fracture-matrix systems.

RP(6)= Sth Threshold liquid saturation.

RP(7)= 1-φ f
 φ f

 is fracture porosity.

IRP = 11 Generalized ECM function (Wu et al. 1996; Wu 2000)

This is a generalized ECM formulation, which relies only on

thermodynamic equilibrium assumption for fracture and matrix systems

(Wu, 2000). The generalized ECM relative permeability functions need

(1) matrix continuum and fracture continuum permeability and (2) a

special capillary function (defined in ICP = 9 in Appendix VI). It is

assumed that PER(i) and PERF(i), input in ROCKS, are absolute

continuum permeability of matrix and fractures (i = 1, 2, 3), respectively,

along the three principal axes or directions, as defined in CONNE. Table

B.2 defines the parameters for the ECM relative permeability function.

 104

Table B.2 Definition of parameters for IRP=11 with generalized ECM relative

permeability functions.

IRP= 11 For generalized ECM option.

RP(1)= mm Of van Genuchten’s function for matrix.

RP(2)= Slr Residual liquid saturation in matrix.

RP(3)= mf Of van Genuchten’s function for fractures.

RP(4)= Slr Residual liquid saturation in fractures.

RP(5)= > 0 krg = 1.0 - krl

< 0 using Corey's function for krg.

RP(6)= Sgr Residual gas saturation in matrix.

RP(7)= φ f Fracture continuum porosity

 105

APPENDIX C. CAPILLARY PRESSURE FUNCTIONS

ICP = 1 Linear function

 P cap ====

−−−− CP(1) for Sl ≤≤≤≤ CP(2)

0 for Sl ≤≤≤≤ CP(2)

−−−− CP(1)
CP(3) −−−− Sl

CP(3)−−−−CP(2)
for CP(2)<<<<Sl <<<<CP(3)

 Restriction: CP(3) > CP(2).

ICP = 2 Function of Pickens et al. (1979)

 P cap ==== −−−− P0 ln
A

B
1++++ 1−−−−B

2
A

2

1 x

 with

A = (1 + Sl/Sl0)(Sl0 - Slr)/(Sl0 + Slr)

B = 1 - Sl/Sl0

 where

 P0 = CP(1) Slr = CP(2) Sl0 = CP(3) x = CP(4)

 Restrictions: 0 < CP(2) < 1 ≤ CP(3); CP(4) ≠ 0

ICP = 3 TRUST capillary pressure (Narasimhan et al., 1978)

P cap ====
−−−− Pe −−−−P0

1−−−−Sl

Sl −−−−Slr

1 η
for Sl <<<<1

0 for Sl <<<<1

 where

 P0 = CP(1) Slr = CP(2) η = CP(3) Pe = CP(4)

 Restrictions: CP(2) ≥ 0; CP(3) ≠ 0

ICP = 4 Milly’s function (Milly, 1982)

 106

Pcap = -97.783 x 10A

 with

A ==== 2.26
0.371

Sl −−−− Slr

−−−−1

1 4

 where Slr = CP(1)

 Restriction: CP(1) ≥ 0.

ICP = 6 Leverett’s function (Leverett, 1941; Udell and Fitch, 1985)

 P cap ==== −−−− P0 •••• σ(T)•••• f(Sl)

 with

 σ(T) - surface tension of water (supplied internally in TOUGH2)

 f(Sl) = 1.417 (1 - S*) - 2.120 (1 - S*)2 + 1.263 (1 - S*)3

 where

 S* = (Sl - Slr)/(1 - Slr)

 Parameters: P0 = CP(1) Slr = CP(2)

 Restriction: 0 ≤ CP(2) < 1

ICP = 7 van Genuchten function (van Genuchten, 1980)

 P cap ==== −−−− P0 [S
*
]

−−−−1 λ −−−− 1(((())))1−−−− λ

 subject to the restriction

−−−−Pmax ≤≤≤≤ Pcap ≤≤≤≤ 0

 Here,

S
* ==== Sl −−−− Slr(((()))) Sls −−−− Slr(((())))

Parameters: CP(1) = λ = 1 - 1/n

 CP(2) = Slr (should be chosen smaller than the

corresponding parameter in the relative permeability function; see

note below.)

 CP(3) = 1/P0

 CP(4) = Pmax

 107

 CP(5) = Sls

 Notation: Parameter λ is m in van Genuchten’s notation, with m = 1 - 1/n;

 parameter n is often written as β.

Note on parameter choices: In van Genuchten’s derivation (1980), the

parameter Slr for irreducible water saturation is the same in the relative

permeability and capillary pressure functions. As a consequence, for Sl

→Slr we have krl → 0 and Pcap → -∞, which is unphysical because it

implies that the radii of capillary menisci go to zero as liquid phase is

becoming immobile (discontinuous). In reality, no special capillary

pressure effects are expected when liquid phase becomes discontinuous.

Accordingly, we recommend always choosing a smaller Slr for the

capillary pressure compared to the relative permeability function.

ICP = 8 ECM function (Pruess and Tsang, 1994)

This ECM capillary function should be used with Option IRP=9 or 10 of

ECM relative permeability functions. Table C.1 lists the definition of the

related parameters.

Table C.1 Definition of parameters for ICP = 8 with ECM capillary pressure

functions.

ICP= 8 For effective continuum approach option.

CP(1)= m Of van Genuchten’s function for matrix.

CP(2)= Slr
 Residual liquid saturation in matrix.

CP(3)= α With a unit Pa
−1(), van Genuchten’s parameter for

matrix.

CP(4)= Pcmax Maximum capillary pressure allowed.

CP(5)= Ss Satiated saturation in matrix.

CP(6)= Sth Threshold liquid saturation.

 108

CP(7)= δ Parameter used to considering air entry effects.

ICP = 9 Generalized ECM function (Wu et al. 1996, Wu 2000)

The generalized ECM capillary function should be used only with Option

IRP=11 of generalized ECM relative permeability functions. Table C.2

lists the definition of the related parameters.

Table C.2 Definition of parameters for ICP = 8 with the generalized ECM capillary

pressure functions.

ICP= 9 For ECM option.

CP(1)= mm Of van Genuchten’s m for matrix.

CP(2)= Slr Residual liquid saturation in matrix.

CP(3)= αm With a unit Pa-1, van Genuchten’s parameter for matrix.

CP(4)= Pcmax Maximum capillary pressure allowed.

CP(5)= Slr Residual liquid saturation in fractures.

CP(6)= mf Of van Genuchten’s m for fractures.

CP(7)= αf With a unit Pa-1, van Genuchten’s Parameter for fractures

